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Abstract. To avoid the loss of semantic information due to the partition of 
quantitative values, this paper proposes a novel algorithm, called MPSQAR, to 
handle the quantitative association rules mining. And the main contributions 
include: (1) propose a new method to normalize the quantitative values; (2) 
assign a weight for each attribute to reflect the values distribution; (3) extend 

the weight-based association model to tackle the quantitative values in 
association rules without partition; (4) propose a uniform method to mine the 
traditional binary association rules and quantitative association rules; (5) show 
the effectiveness and scalability of new method by experiments. 

1   Introduction 

The efficient discovery of quantitative association rules is considered as an interesting 

and important research problem. Previous researches in quantitative association rules 

mining mainly focus on applying binary association mining algorithms by partitioning 

the quantitative value into intervals [6,7, 9, 10, 12]. However, since each interval is 

mapped to a binary attribute relying on whether the attribute value falls into the range 
of interval, the quantitative semantic information of the original attribute disappears. 

Moreover, the generated rules just can reflect the co-occurrence relationship among 

bins of different attributes rather than among all the attributes directly [2]. Let T be a 

data set , T(i) be the i-th transaction of T and T(i, j) be the responding value of j-th 

item (or attribute) of the i-th transaction. Without partitioning, Min-apriori [2] 

processes the quantitative data by normalizing T(i, j) into Tn(i, j) with 
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where |T| is the size of data set. And Tn(i, j)[0,1]. 
For conventional binary association rule mining, traditional support (denoted by 

Tsupport ) of an item set X is calculated as: 
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However, for Min-apriori in [2], after the normalization of the data set, the support 

of item set X is defined as follows: 
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In the rest of paper, Nsupport(X) is used to denote the support of X, where Tn(i, j) is 

normalized by Equation (1). In Equation (3), the support of X is defined as the sum of 

all the minimum Tn(i, j) values of each transaction in data set. Obviously, the larger 

Tn(i, j) makes a greater contribution to the support of X containing item j. Therefore, 

Min-apriori can keep the quantitative semantics during association rules mining. 

Table 1. A data set contains 5 transactions 
and I= {A, B, C, D, E, F}. 

TID A B C D E F 

TID_1 10 5 1 0 0 10 

TID_2 2 5 1 0 0 0 

TID_3 0 0 0 1 2 2 

TID_4 1 5 1 0 0 0 

TID_5 0 0 0 0 0 1 

Table 2. Data set after normalization. 

TID A B C D E F 

TID_1 0.77 0.33 0.33 0.0 0.0 0.77 

TID_2 0.15 0.33 0.33 0.0 0.0 0.0 

TID_3 0.0 0.0 0.0 1.0 1.0 0.15 

TID_4 0.08 0.33 0.33 0.0 0.0 0.0 

TID_5 0.0 0.0 0.0 0.0 0.0 0.08 

Total 1.0 1.0 1.0 1.0 1.0 1.0 

The data set in Table 1 can be normalized as shown in Table 2 with Equation (1). By 

Equation (3), for each item iI, Nsupport({i}) = 1.0, thus the item set {i} containing 
single item is always frequent. That does not show the truth that {D} occurs rarely. 

This problem is called side effect. To address these problems, the rest of paper is 

organized as follows. Section 2 describes the new way to normalize the quantitative 

values. Section 3 introduces weight according to the variance of the values for each 

attribute. Section 4 presents the MPSQAR algorithm to mine quantitative association 
rules. Section 5 gives experiments to show the effective and scalable performance of 

MPSQAR algorithm. And in Section 6 a short conclusion is given. 

2  Quantitative Values Normalization 

In order to eliminate the side effect and unify both the binary and quantitative 

situations, we need the following new concepts. 

Table 3. Data set with binary values. 

TID A B C D E F 

TID_1 1 1 1 0 0 1 

TID_2 1 1 1 0 0 0 

TID_3 0 0 0 1 1 1 

TID_4 1 1 1 0 0 0 

TID_5 0 0 0 0 0 1 



Definition 1.  Given the j-th attribute in data set T, let v be the most possible nonzero 

value to occur for the attribute. Then v is called Expecting Value Filled, abbreviated 

as EVF. EVF(j) is estimated as follows: 
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Especially, Considering the Table 3 with all binary attributes, all EVF values are 1.    

Definition 2. Let e be the value to normalize the values of j-th attribute in the data set. 

Then e is called Normalization Coefficient, abbreviated as NC, and defined as follows: 
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 According to Definition 2, T(i, j) can be normalized into Tn(i, j) in the following: 
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In the rest of paper, NCsupport(X) is used to denote the support of X defined in 

Equation (3), where Tn(i, j) is normalized by NC. So, data sets in Table 1 and Table 3 
can be normalized as shown in Table 4 and Table 5 respectively.

Table 4. The normalization result of Table 1 
by NC. 

TID A B C D E F 

TID_1 0.46 0.2 0.2 0.0 0.0 0.46 

TID_2 0.09 0.2 0.2 0.0 0.0 0.0 

TID_3 0.0 0.0 0.0 0.2 0.2 0.09 

TID_4 0.05 0.2 0.2 0.0 0.0 0.0 

TID_5 0.0 0.0 0.0 0.0 0.0 0.05 

Total 0.6 0.6 0.6 0.2 0.2 0.6 

Table 5. The normalization result of Table 3 
by NC. 

TID A B C D E F 

TID_1 0.2 0.2 0.2 0.0 0.0 0.2 

TID_2 0.2 0.2 0.2 0.0 0.0 0.0 

TID_3 0.0 0.0 0.0 0.2 0.2 0.2 

TID_4 0.2 0.2 0.2 0.0 0.0 0.0 

TID_5 0.0 0.0 0.0 0.0 0.0 0.2 

Total 0.6 0.6 0.6 0.2 0.2 0.6 

Comparing Table 4 with Table 2, NCsupport({A})=0.6. Thus the side effect does not 

occur as Table 2 shows when the size of the item set is small. Given minimum 
support minsupp=0.3, then Tsupport({A,F})=0.2, so {A,F} is not frequent. While 

NCsupport({A,F})=0.46, so{A,F} is frequent. Especially, considering the binary 

values situation, according to Table 5, for any item set X, NCsupport(X)=Tsupport(X). 

Lemma 1. Given an item set X of a data set T. Assume that all the items in T are 

binary attributes. Tsupport(X)=NCsupport(X). (Proof is omitted due to limited space.) 

3   Incorporate Weight into Quantitative Association Rules 

3.1   Introducing weight  

In previous sections, Equation (6) is used for normalization without side effect. It can 

unify the support definitions in both binary and quantitative situations. However, it 



does not consider the distribution of the values in each attribute. To introduce the 

weight of quantitative association rules, we give several observations.  

Observation 1. In Table 1, the values of attribute A and attribute B are distributed 

quite differently. However, after normalizing the data by NC into Table 4, 

NCsupport({A}) is same as NCsupport({B}) although  the distributions of A and B 

are quite different especially when the size of item set is not large enough. 
Observation 2. In Table 1, attribute C always occurs with one or zero. So C is 

supposed to be a binary attribute. Comparing A with C in Table 4, it is obvious that 

NCsupport({A}) is equal to NCsupport({C}). So Equation (3) can not reflect the 

difference between A and C. And a reasonable result that NCsupport({A}) is greater 

than NCsupport({C}) is expected. 

Based on the observations above, it is worthwhile to incorporate the distributions of 

different attributes into the way of calculating support. 

Observation 3. In Table 1, attribute B always occurs with ‘5’ or ‘0’ in data set. Thus 
it should also be viewed as a binary attribute. As a result, that NCsupport({B}) equals 

to NCsupport({C}) is considered to be reasonable. 

In order to reflect the distribution of each attribute described in observation 1 and 2, 

and keep the property in observation 3, a weight should be introduced for each 

attribute in the method of calculating support. 

To be more convenient for discussion later, let NAVA be an array which contains all 

the nonzero values for specific attribute in data set. And the NAVA is abbreviated for 

Nonzero Attribute Value Array. In Table 1, NAVA(1)={10,2,1}.Considering the 
Definition 1, it can be easily found that EVF(j) is the mean value of NAVA(j). 

Definition 3.   Let NAVA(i, j) be the i-th value in the NAVA(j), and | NAVA(j)| be the 

size of  NAVA(j) array.  Then the relative diversity value of NAVA(j), is said  to be 

the Variance Factor of the j-th attribute , abbreviated as VF, defined as: 
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Considering that Equation (7) above, VF(j) reflects the variance of the j-th attribute 

relative to EVF(j) that is the expecting value of NAVA(i, j) for the j-th attribute. 

 Lemma 2.   Given a data set T, and T(i, j) ≥0 , then VF(j)[0,2]. If and only if 
each NAVA(i, j)=EVF(j), VF(j)=0. (Proof is omitted, since it is straightforward ) 

By the Definition 3 and Lemma 2, given the specific j-th attribute, then the weight 
of the j-th attribute can be defined as follows: 

2/)(1)( jVFjweight  . (8) 

Lemma 3.   Given the specific j-th attribute, let weight(j) be the weight of  the j-th 

attribute as defines above.  Then (1) weight(j)[1,2].  (2) And when each NAVA(i, j) 
approaches EVF(j), then weight(j) approaches 1.  
Proof: It follows from Lemma 2 clearly and immediately. Note that, the more the 

values of the j-th attribute vary, the greater the weight(j) is. Especially, if the j-th item 

is a binary attribute, then it is inferred easily that VF(j)=0, therefore, weight(j)=1. 



3.2   Modeling weight  

Weighted support and normalized weighted support for binary association rules are 

first proposed in [1]. In order to incorporate weights of quantitative attributes into 

association rules, the definition of support in Equation (3) should be revised.  

Definition 4.  Given an item set X from data set T and the j-th item attribute in the 

item set X, let weight(j) be the weight of  the j-th attribute and let Wsupport(X) 
denote the weighted support described in the following.  
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Note that, as defines in [1, 2], let minsupp be a user specified minimum support, if  

Wsupport(X) ≥ minsupp, then X is a large (or frequent) item set. If the size of large X 

is k, then X is called large k-item set. 

Lemma 4. Given a data set T, suppose all the items in T are binary attributes, and an 
item set X from data set T. Then Tsupport(X)=NCsupport(X)=Wsupport(X). (proof is 

omitted) 

As shows in Lemma 4, the definition of weighted support can handle the support of 

item set in both data sets with binary and quantitative attributes uniformly. Also it can 

tackle the quantitative attribute with the capability of reflecting the distribution of 

attribute values directly. 

Given two item sets X and Y, and X∩Y=, an association rule r can be defined in 

the form: X=>Y. Thus: (1) the support of r is: support(r) = Wsupport(XUY); (2) the 

confidence of r is: confidence(r) = NCsupport(XUY) /NCsupport(X).  

Given minsupp be the minimum support and minconf be the minimum confidence, 

if support(r)≥minsupp and confidence(r)≥minconf, the rule r is an interesting rule.  

4  Mining Association Rules With MPSQAR Algorithm 

Min-apriori algorithm is proposed for handling quantitative association rules directly 

without partition [2]. Considering the weighted support of item set X defined in 

Definition 4, the apriori property does not make sense again. Note that although 

{C,F}{A,C,F} , Wsupport({A,C,F})=0.258 > Wsupport({C,F}) =0.244, {A,C,F} is 
frequent while {C,F} is not. In [1], MINWAL(O) and MINWAL(W) are proposed to 

tackle the weighted association rules with binary attributes. And the weight of each 

attribute is user specified, while this paper produces the weight of each attribute 
according to its distribution. Thus MPSQAR algorithm is proposed by revising the 

MINWAL(O) for the weighted quantitative association rules in this paper. Let X, Y be 

item set, minsupp be the minimum support, and ||/)()( XjweightXw
Xj 

 , then 

Wsupport(X)=w(X)×NCsupport(X). Let MPW be the maximum possible weight for 
any item set contains X, then define MPW(X) in mathematic form as MPW(X)= 

max{w(Y)|XY}. It is easy to draw that NCsupport(X)≥NCsupport(Y) when XY. 
Lemma 5.   If NCsupport(X)<minsupp/MPW(X), then X cannot be the subset of any 

large item set.(Due to the limited space, the proof is omitted.)  



Especially, according to Lemma 3, if NCsupport(X)minsupp/2, X cannot be the 
subset of any large item set. To find the large item set, MPSQAR employs large 

candidate k-1 item sets to produce candidate large k item sets. Let T be the data set, 

and Tn be the data set normalized from T, Weights be set of item weights, Ci be the 

candidate large i-item sets and Li be the large i-item sets, then the MPSQAR algorithm 

is described as follows: 

Algorithm MPSQAR (Mining Preserving Semantic Quantitative Association Rule) 

Input: T:  the data set; minsupp: the minimum support 
Output: a list of large item set L 
Begin 

 Tn=normalize(T); 

 Weights[]=calculateWeight(T); 

 C1=singleItem(Tn,minsup); 

 L1=check(C1,minsup); 

 for(i=1;|Ci|>0;i++) 

 Begin 

  Ci+1=join(Ci); 

   Ci+1=prune(Ci+1,minsup); 

   Li+1=check(Ci+1,minsup); 

   L=L∪Li; 
 End 

 Return L; 

End 

All the methods in MPSQAR are listed in the following: 

normalize(T): use Equation (6) to normalize each value in T.  

calculateWeight(T): according to Equation (8), get all the weights of all the attributes. 

singleItem(Tn, minsupp): based on all the single item set, the single item set X will be 

pruned if NCsupport(X)minsupp/2 or NCsupport(X)minsupp/MPW(X). 
prune(Ci+1, minsupp): from candidate large (i+1)-item set, remove the item set X in 

following situations: (1)existing an i-item set which is a subset of X does not occur in 

Ci. (2) NCsupport(X)minsupp/2. (3) NCsupport(X)minsupp/MPW(X). 
join(Ci): similar to [1,3], return (i+1)-item sets. 
check(Ci+1, minsupp): according to Equation(3), check data set T and the item set X 

which Wsupport(X)minsupp will be removed, return the large (i+1)-item sets. 

5  Experiments and Performance study 

MPSQAR is written in java. All the experiments are performed on HP Compaq 6510b 

with Intel(R) Core(TM)2 Duo CPU 1.8G HZ and 1G memory and Windows Vista. 

MPSQAR runs on both synthetic and real data sets. (1) For synthetic data set, the 

values of each attribute will be 0 with a probability generated randomly ranging from 

0 to 1. And the nonzero values of the attribute occur according to normal distribution 

whose mean and deviation are produced randomly. The range of nonzero values, the 

number of transactions and number of attributes are all user-specified. (2) For the real 

data set, we use the text data set called 19MclassTextWc from WEKA home page. In 



the data set, all the word count feature vectors have already extracted. So the patterns 

of the words occurrence can be mined.  

To be more convenient, some notations are given: (a) BI: convert data set into 

binary data set depending on whether the value is greater than 0 firstly, then mine it 

with the apriori algorithm. (b) MA: mine data set with min-apriori algorithm [2]. (c) 

QM: normalize data set with NC and mine the data set without considering the weight 
of attribute. (d) WQ: mine the data set employing MPSQAR algorithm. 
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Step 1, with our data generator, 10 synthetic data sets containing 10k transactions 

and 10 attributes are generated. And the 10 data sets vary with the number of 

quantitative attributes in each data set. Especially, when the number of quantitative 

attributes is 0, the data set can be viewed as a binary data set and when the number is 

10, all the attributes are quantitative. Given minsupp=0.3 and minsupp=0.4, Variation 

in the number of large item sets on the synthetic data sets with changing number of 
quantitative attributes are shown in Fig.1 and Fig.2 respectively. As we see, when the 

number of quantitative attributes is 0, BI, QM and WQ produce the same number of 

large item sets and that is in agreement with the Lemma 4, and the number for MA is 

greater than others due to its normalization way. For BI, there is no difference among 

different numbers of quantitative attributes, so BI cannot reflect the difference of 

quantitative attribute. Also, the number of large item sets for WQ is always greater 

than the one for QM due to the weight of attribute.  

Step 2, given the synthetic data set containing all 10 quantitative attributes and the 
real data set containing 50 quantitative attributes extracting from the real text data, 

then the variation in the number of large item sets with different minsupp is shown in 

Fig.3 and Fig.4 respectively. As both figures shown, when the minsupp increases, the 

number of the large item set decreases. If the minsupp gets close to 1, the number of 



large item sets for BI, MA and WQ approaches 0. However, the number for MA stops 

decreasing due to its side effect. 

Step 3, with the data generator, 7 data sets containing 50 attributes vary with 

different numbers of transactions from 100k to 700k. And execution time on these 

data sets is shown in Fig.5. Also, 9 data sets accommodating 100k transactions vary 

with changing number of attributes from 10 to 50. And execution time on these data 
sets is shown in Fig.6. From both figures, it shows that MPSQAR scales 

approximately linearly.  

6   Conclusion and Future work 

Most existing work for quantitative association rules mining relies on partitioning 

quantitative values and employs binary mining algorithm to extract the association 

rules. And the result rules just reflect the association among these intervals of 

different items rather than the association among different items due to the semantic 

loss of the partition. To conquer the problem, this paper proposes the MPSQAR 

algorithm to mine the quantitative association rules directly by normalizing the 

quantitative values. MPSQAR also introduces a weight for each attribute according to 
the distribution of the attribute value and tackles the binary data and quantitative data 

uniformly without side effect existing in Min-apriori. The experiments show the 

efficiency and scalability of proposed algorithm.  However, the modeled weight is 

sensitive to the noise of attribute values. More future work is needed to improve this 

feature. 
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