
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/275336864

Node	Anomaly	Detection	for	Homogeneous
Distributed	Environments

ARTICLE		in		EXPERT	SYSTEMS	WITH	APPLICATIONS	·	MAY	2015

Impact	Factor:	1.97	·	DOI:	10.1016/j.eswa.2015.04.037

4	AUTHORS,	INCLUDING:

Jian	Xu

Nanjing	University	of	Science	and	Technology

10	PUBLICATIONS			13	CITATIONS			

SEE	PROFILE

Yexi	Jiang

Facebook

19	PUBLICATIONS			51	CITATIONS			

SEE	PROFILE

Chunqiu	Zeng

Florida	International	University

10	PUBLICATIONS			14	CITATIONS			

SEE	PROFILE

Available	from:	Yexi	Jiang

Retrieved	on:	01	September	2015

http://www.researchgate.net/publication/275336864_Node_Anomaly_Detection_for_Homogeneous_Distributed_Environments?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_2
http://www.researchgate.net/publication/275336864_Node_Anomaly_Detection_for_Homogeneous_Distributed_Environments?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Jian_Xu64?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Jian_Xu64?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Nanjing_University_of_Science_and_Technology?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Jian_Xu64?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Yexi_Jiang?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Yexi_Jiang?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Facebook?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Yexi_Jiang?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Chunqiu_Zeng?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Chunqiu_Zeng?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Florida_International_University?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Chunqiu_Zeng?enrichId=rgreq-63a7f71f-3f6c-4378-8adf-242d9cf9855a&enrichSource=Y292ZXJQYWdlOzI3NTMzNjg2NDtBUzoyMjEyMTM0NjYwNzUxMzZAMTQyOTc1MjgwODY1Nw%3D%3D&el=1_x_7

Node Anomaly Detection for Homogeneous Distributed

Environments
Jian Xu1, Yexi Jiang2, Chunqiu Zeng2, Tao Li2

1. School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China.

Email: dolphin.xu@njust.edu.cn

2. School of Computer Science, Florida International University, Miami, FL, USA.

Email: {yjian004,czeng001,taoli}@cs.fiu.edu

Abstract: Identifying the anomalies is a critical task to maintain the uptime of the monitored
distributed systems. For this reason, the trace data collected from real time monitors are often
provided in form of streams for anomaly detection. Due to the dramatic increase of the scale of
modern distributed systems, it is challenging to effectively and efficiently discover the anomalies
from a voluminous amount of noisy and high-dimensional data streams. Moreover, the evolving of
the system infrastructures brings new anomaly types that cannot be generalized as existing ones,
making the existing anomaly detection solutions unavailable.
To address these issues, in this paper, we introduce a new type of anomalies called contextual
collective anomaly. Then we propose a framework to discover this type of anomaly over a
collection of data streams in real time. A primary advantage of this solution is that it can
accurately identify the anomalies by taking both the contextual information and the historical
information of a data stream into consideration. Also, the proposed framework is designed in a
way with a low computational cost, and is able to handle large-scale data streams. To demonstrate
the effectiveness and efficiency of our proposed framework, we empirically validate it on a real
world cluster.
Keywords: Anomaly detection; multiple data streams; contextual anomaly; collective anomaly

1. Introduction
A homogeneous distributed environment generally consists of multiple computing nodes with

the same hardware configuration, software environment and similar workloads. A typical example
of the homogeneous distributed environment is the load-balanced system, which is widely used at
the backend by the popular large-scale web sites like Amazon, Google and Facebook. In such a
distributed environment, the computing nodes in a distributed system would behave similar to
each other in the ideal situation (no anomaly and no occasional fluctuation). In such a situation,
the observations (in terms of monitored metrics) of the nodes should be close to each other at any
time. In practice, node anomaly might be caused by a variety of reasons, such as software aging,
resource contention, and hardware failure, making the affected nodes behave differently from
other nodes (Grottke & Trivedi, 2007). Overtime, a system is becoming more instable and it
would fail to function properly due to the existence of anomaly nodes. Although the health-related
data are collected across the system for troubleshooting, unfortunately how to effectively and
efficiently identify anomalies and their root causes in the data has never been as straightforward as
one would expect.

Traditionally, domain experts are responsible for examining the data with their experience and
expertise. Such a manual process is time-consuming, error-prone, and even worse, not scalable.
Due to the data scale and complexity, event the domain experts cannot fully identify the true
anomalies and may also missing some deeply hidden anomalies. Moreover, as the behaviors of the
distributed environment are likely changing over time, such temporal dynamics is difficult to be
captured by the domain experts, as they may not be able to refresh their knowledge quick enough.

As the size and complexity of computer systems continue to grow, the difficulty for automated
anomaly identification increases dramatically and it have far beyond the processing capability of
the domain experts. The traditional expert systems that encoded the rules of the domain experts
can only partially addressed the data scale problem. However, they cannot solve the complexity
problem. This is because a distributed environment is dynamic. It is not likely such changing
behaviors can be well captured by the static rules. Overtime, the deployed expert system based
anomaly detection would gradually be outdated, as the rate of false positive and false negative
would increase.

There are quite a few data processing and anomaly analysis infrastructures to enable automated
anomaly identification. However, these existing data processing infrastructures are designed based
on inherent non-stream programming paradigm such as Map/Reduce (Dean & Ghemawat, 2008),
Bulk Synchronous Parallel (BSP) (Valiant, 1990), and their variations. To reduce the processing
delay, these applications have gradually migrated to stream processing engines (Arasu et al., 2003;
Chandrasekaran et al., 2003). As the infrastructures have been changed, anomalies in these
applications are required to be identified online across multiple data streams. The new data
characteristics and analysis requirements make existing anomaly detection solutions no longer
suitable.

To address the problem, in this paper, we present a real time mechanism for node anomaly
detection by taking both the node context information and the node historical information into
consideration from multiple data streams.

1.1 A Motivating Example
Figure 1 illustrates the scenario of monitoring a 6-node computer cluster, where the x-axis

denotes the time and the y-axis denotes the CPU utilization. The cluster has been monitored
during time [0, t6]. At time t2, a computing task has been submitted to the cluster and the cluster
finishes this task at time t4. As shown in Figure 1, two nodes (marked in dashed line) behave
differently from the majority during some specific time periods. Node 1 has a high CPU utilization
during 1 2[,]t t and a low CPU utilization during 3 4[,]t t while node 2 has a medium CPU
utilization all the time. These two nodes with their associated abnormal periods are regarded as
anomalies. Besides these two obvious anomalies, there is a slight delay on node 3 due to the
network delay and a transient fluctuation on node 4 due to some random factors. However, they
are normal phenomena in distributed systems and are not regarded as anomalies.

Figure 1 CPU utilization of a computing cluster

A quick solution for stream based anomaly detection is to leverage the techniques of complex
event processing (CEP) [3, 4] by expressing the anomalies detection rules with corresponding
continuous query statements. This rule-based detection method can be applied to the scenarios
where the anomaly can be clearly defined. Besides using CEP, several stream based anomaly
detection algorithms have also been proposed. They either focus on identifying the contextual
anomaly over a collection of stable streams (Bu et al., 2009) or the collective anomaly from one
stream (Anguilli & Fassetti, 2007; Pokrajac, Lazarevic, & Latecki, 2007). These existing methods
are useful in many applications but they still cannot identify certain types of anomalies.

Figure 2 plots the ground truth as well as all the anomalies identified by existing methods
including the CEP query with three different rules (Rule-CQ1, 2, and 3), the collective based
anomaly detection (Breunig et al., 2000), and contextual based anomaly detection (Chandola,
Banerjee, & Kumar, 2009).

Figure 2 Identified anomalies in the motivating example (The box lists the IDs of abnormal streams during

specified time period)

To detect the anomalies via CEP query, the idea is to capture the events when the CPU
utilizations of nodes are too high or too low. An example query following the syntax of (Agrawal
et al., 2008) can be written as follows:

PATTERN SEQ(Observation o[])
WHERE avg(o[].cpu) oper threshold (AND|OR avg(o[].cpu) oper threshold)*
WITHIN {length of sliding window}

where the selection condition in WHERE clause is the conjunction of one or more boolean
expressions, oper is one of f>, <, <>, ==g, and threshold can be replaced by any valid expression.
However, CEP queries are unable to correctly identify the anomalies in Figure 1 no matter how
the selection conditions are specified. For instance, setting the condition as avg(o[].cpu) >
{threshold} would miss the anomalies during 3 4[,]t t (Rule-CQ1); setting the condition as

avg(o[].cpu) < {threshold} would miss the anomalies during 1 2[,]t t (Rule-CQ2); and combining
the two above expressions with OR still does not work (Rule-CQ3). Besides deciding the selection
condition, how to rule out the situations of slight delays and transient fluctuations, and how to set
the length of the sliding windows are all difficult problems when writing the continuous queries.
The main reason is that the continuous query statement is not suitable to capture the contextual
information where the “normal” behaviors are also dynamic (the utilizations of normal nodes also
change over time in Figure 1).

Compared with CEP based methods, contextual anomaly detection methods (such as Gupta et
al., 2013; Jiang, Chen, & Yoshihira, 2006) achieve a better accuracy as they utilize the contextual
information of all the streams. However, one limitation of contextual based methods is that they
do not leverage the temporal information of streams and are not suitable for anomaly detection in
dynamic environments.

Therefore, these methods would wrongly identify the slightly delayed and fluctuated nodes as
anomalies. For the given example, collective anomaly detection methods do not work well neither.
This is because these methods would identify the anomaly of each stream based on its normal
behaviors. Once the current behavior of a stream is different from its normal behaviors (identified
based on historical data), it is considered as abnormal. In the example, when the cluster works on
the task during time period 3 4[,]t t , all the working nodes would be identified as abnormal due to
the sudden burst.

1.2 Contributions
In this paper, we propose an efficient solution to identify this special type of anomaly in the

above example, named contextual collective anomaly. Contextual collective anomalies bear the
characteristics of both contextual anomalies and collective anomalies. This type of anomaly is
common in homogeneous distributed system monitoring, where data come from distributed but
homogeneous data sources. We will formally define this type of anomaly in Section 2.

Besides proposing an algorithm to discover the contextual collective anomalies over a
collection of data streams, we also consider the scale-out ability of our solution and develop a
distributed streaming processing framework for contextual collective anomaly detection. More
concretely, our contributions can be described as follows:
l We discuss the existing work of anomaly detection, especially streaming anomaly detection,

and explain why the current types of anomalies cannot fully cover all the situations and why
we need a new anomaly detection framework.

l We provide the definition of contextual collective anomaly and propose an incremental
algorithm to discover the contextual collective anomalies in real time. The proposed
algorithm combines the contextual as well as the historical information to effectively identify
the anomalies.

l We propose a flexible three-stage framework to discover such anomalies from multiple data
streams. This framework is designed to be distributed and can be used to handle large scale
data by scaling out the computing resources. Moreover, each component in the framework is
pluggable and can be replaced if a better solution is proposed in the future.

l We empirically demonstrate the effectiveness and efficiency of our solution through the real
world scenario experiments and show that our solution has a better accuracy when system
appears CPU-related faults, or IO-related faults, or a combinatory of these faults.

1.3 The Paper Outline
The rest of the paper is organized as follows. Section 2 gives a definition of contextual

collective anomaly and then presents the problem statement. Section 3 provides an overview of
our proposed anomaly detection framework. We introduce the three-stage anomaly detection
algorithm in detail in Section 4. Section 5 presents the result of experimental evaluation. The
related works are discussed in Section 6. Finally, we conclude in Section 7.

2. The Problem Statement
In this section, we first give the notations and definitions that are relevant to the anomaly

detection problem and make it clear through Figure 3. Then, we formally define the problem
based on the given notations and definitions.

1 1 1 2 1 3 1, , , . . . , , . . .ts s s s

2 1 2 2 2 3 2, , , . . . , , . . .ts s s s

3 1 3 2 3 3 3, , , . . . , , . . .ts s s s
…

…
...

1 2 3, , , . . . , , . . .n n n n ts s s s

Snapshot S(2)

at time 2
Snapshot S(t)

at time t

The 1st node

The 2nd node

The 3rd node

The nth node

Contextual
information over

multi data streams

Historical information
of a stream

A group of
homogeneous

 Nodes

The nth data stream

The 2nd data stream

() () ()
11 12 1
() () ()

() 21 22 2

() () ()
1 2

t t t
n

t t t
t n

t t t
m m mn

f f f
f f f

S

f f f

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

!
!

" " # "
!

() () ()
1 2

Tt t t
nt n n mns f f f⎡ ⎤= ⎣ ⎦!

The 1st data stream

Figure 3 Data stream, stream collection and snapshot

Definition 1. Data Stream. Given a homogeneous distributed environment consisting of n
computing nodes, for any a node i,1 i n≤ ≤ , a data stream of this node, iS , is an ordered infinite

sequence of data instances { }1 2 3, , ,...i i is s s . Each data instance its is the observation of data stream

iS at timestamp t and arrives at a fixed time interval, where () () ()
1 2

Tt t t m
it i i mis f f f R⎡ ⎤= ∈⎣ ⎦L , and

m is the number of features that are defined as any individually measurable variables of the node
being observed, such as CPU utilization, available memory size, I/O, network traffic, etc. Note
that all the observations have the same dimension.
A fault typically induces changes in multiple subsystems of a node, such as CPU, memory, I/O
and network. For example, a memory leak may affect the amount of free memory and the CPU
utilization rate; an operation to a malfunctioning disk may lead to huge IO time and long CPU idle
time. Hence, in order to cover a broad fault space, it is necessary to collect and store feature data
from all the subsystems per node. Furthermore, it is beneficial to track and store the tendencies of
these features by collecting multiple samples. For the remaining paper, the terms “data instance”
and “observation” would be used interchangeably. To make the notation uncluttered, we use is in
places where the absence of timestamp do not cause the ambiguity.

Definition 2. Stream Collection. A stream collection { }1 2, ,..., nS S S S= is a collection of the

corresponding data streams from n computing nodes.

The input of our anomaly detection framework is a stream collection. For instance, in the

motivating example, the input stream collection is { }, , , , ,S = ①②③④⑤⑥ .

Definition 3. Snapshot. A snapshot is a matrix

() () ()
11 12 1
() () ()

() 21 22 2
1 2

() () ()
1 2

[...]

t t t
n

t t t
t n

t t nt

t t t
m m mn

f f f
f f f

S s s s

f f f

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L
L

M M O M
L

,

which captures the configuration of the stream collection S at time t and makes it easy to diagnose
anomalies across different nodes.

Definition 4. Snapshot Anomaly Score. Given a snapshot ()
1 2[...]t
t t ntS s s s= , its anomaly

score is a vector ()
1 2[, ,..., ,...,]t T
t t it ntQ Q Q Q Q= , where itQ measures the amount of deviation of

the observation its to the center of all the observations in snapshot ()tS . To make the notation

uncluttered, we use iQ in places where the absence of timestamp do not cause the ambiguity.
Snapshot Anomaly is a kind of contextual anomaly in nature. Under most of cases, an observation
should be similar to the majority of the observations. The violation of this rule means that the
stream may be a candidate of abnormal data streams. But, an observation of a data stream only
reflects the transient behavior. Due to the appearance of transient fluctuation and slight phase shift,
there is a high false-positive if we use a snapshot anomaly score only. To solve this issue, we take
the historical information of a data stream into consideration to detect abnormal data streams. And
we call this special type of anomaly as contextual collective anomaly.
Definition 5. Contextual Collective Anomaly. A contextual collective stream anomaly is denoted
as a tuple ,[,],i b e iS t t N< > , where iS is the i-th data stream from the collection of data streams S,
[,]b et t is the associated time period when iS is observed to constantly deviate from the majority
streams in S, and (,)i i iN h Q I= indicates the severity of the anomaly, where iQ denotes the
snapshot anomaly score of data stream iS , iI measures the influence of the historical
observation of data stream iS and h is a function reflecting the idea of integrating the
contextual information and the historical information.
In the motivating example, three contextual collective anomalies can be found in total. During
time period 1 2[,]t t , node 1 behaves constantly different from the other nodes, so there is an

anomaly 1 2 11,[,],t t N< > . The other two contextual collective anomalies, '
3 4 11,[,],t t N< > and

0 6 22,[,],t t N< > , can also be found with the same reason.
Problem Definition. The anomaly detection problem in our paper can be described below: Given

a stream collection { }1 2, ,..., mS S S S= , identify the source of the contextual collective anomalies

iS , the associated time period [,]b et t , as well as an anomaly quantification. Moreover, the
detection has to be conducted on data streams that look-back is not allowed and the anomalies
need to be identified in real time.

3. The System Framework
In this paper, we focus on detecting contextual collective anomalies in homogeneous collection of
nodes (also called “groups”), and our proposed framework is shown as Figure 4. Our anomaly
detection is based on two key observations. First, the nodes performing comparable activities generally
exhibit similar behaviors (Tabatabaee & Hollingsworth, 2007; Mirgorodskiy, Maruyama, & Miller,
2006). Second, faults are rare events, so the majority of system nodes are functioning normally. For
each group, three tightly coupled stages including the preprocessing stage, the scoring stage, and the
alert stage, are applied to find the nodes that exhibit different behaviors from the majority. The
functionality of the three stages is briefly described below.

data stream

data stream

data stream

data stream
… …

Dispatcher

Dispatcher

Preprocessing Stage Scoring Stage
Snapshot

Scorer

Snapshot
Scorer

Snapshot
Scorer Stream

Scorer

Stream
Scorer

Alert Stage

Alert
Trigger

Distributed System

Continuous
Monitoring

data stream

data stream

Snapshot
Acquisition

raise
alerts

Figure 4 The distributed real time stream anomaly detection framework

l The Preprocessing stage.
On receiving the observations from external data sources, this stage is responsible for data stream
preprocessing including common data preprocessing, snapshot acquisition, and snapshot dispatching.
Possible common data preprocessing includes converting variable-spaced time series to
constant-spaced ones, filling in missing samplings, generating real-value samples from system logs,
and removing period spikes or noises. After common data preprocessing, data streams are assembled
into snapshots. Finally, dispatchers are used to shuffle the snapshots to different downstream processing
components.
l The Scoring stage
This stage quantifies the candidate anomalies using the snapshot scorer followed by the stream scorer.
The snapshot scorer leverages contextual information to quantify the confidence of anomaly for each
data instance at a given snapshot. Taking Figure 5 for example, it shows the data distribution by taking
the snapshot of the 2-dimensional data instances of 500 streams at timestamp t. As shown, most of the
data instances are close to each other and located in a dense area. These data instances are not likely to
be identified as anomalies as their instance anomaly scores are small. On the contrary, a small portion
of the data instances (those points that are far away from the dense region) have larger instance
anomaly scores and are more likely to be abnormal.

Figure 5 The snapshot at a certain timestamp

A data instance with a high anomaly score does not indisputably indicate its corresponding stream to be
a real anomaly. This is because the transient fluctuation and phase shift are common in real world
distributed environment. To mitigate such effects, the stream scorer is designed to handle the problem.
In particular, the stream scorer combines the information obtained from the instance scorer and the
historical information of each stream to quantify the anomaly confidence of each stream.
l The Alert stage.
The alert stage contains the alter trigger. The alert triggers leverage the unsupervised learning methods
to identify and report the outliers. The advantage of our framework is reflected by the ease of
integration, the flexibility, and the algorithm independence. Firstly, any external data sources can be
easily fed to the framework for anomaly detection. Moreover, the components in every stage can be
scaled-out to increase the processing capability if necessary. The number of components in each stage
can be easily customized according to the data scale of different real applications. Furthermore, the
algorithms in each stage can be replaced and upgraded with better alternatives and the replacement
would not interfere with other stages.
To truly make the above mechanism useful in practice, we intend to provide two guarantees in the
design of our anomaly identification system. First is the high accuracy, in terms of the low false alarm
rate and extremely low missed rate (i.e., close to zero). Second is the time efficiency, meaning to
quickly identify faulty nodes from the data collected, no matter how large are the data. The first
guarantee is essential for the usefulness and effectiveness of the method, while the second guarantee is
needed for quick detection and timely response.

4. Methodology
In this section, we present the details of our node anomaly detection mechanism.

4.1 Snapshot Acquisition & Dispatching
The goal of this step is to gather the system data for representing node behaviors, transform the data
into a uniform format called as snapshot, and then dispatch them for data analysis.
The dispatching sub-step is an auxiliary stage in our framework. When the data scale (i.e., the number
of streams) is too large for a single computing component to process, the dispatcher would shuffle the
received observations to downstream computing components in the scoring stage. By leveraging
random shuffling algorithm like Fisher-Yates shuffle (Fisher et al., 1949), dispatching can be
conducted in constant time per observation. After dispatching, each downstream component would

conduct scoring independently on sampled stream observations with identical distribution.

4.2 Snapshot Anomaly Quantification
Quantifying the anomaly in a snapshot is the first task in the scoring stage and we leverage snapshot
scorer in this step. This score measures the amount of deviation of the specified observation sit to the
center of all the observations in a snapshot at timestamp t.
A common solution to quantify the anomaly score of multi-dimension data is Local Outlier Factor
(LOF) (Breunig et al., 2000). In principle, LOF measures the anomaly score using density-based
clustering. This method is useful for online mining but is not suitable in our scenario due to the
following two limitations: (1) LOF is not aware of the scale inconsistency among different dimensions.
For dimensions with inconsistent scales, LOF would be dominated by the dimensions with large scales.
Taking the system monitoring application for example, the CPU utilization is represented by the
percentage of clock ticks used per second, while the memory usage is represented by the amount of
RAM in KB, MB or GB, for which the later has a much larger scale. When using LOF, the dimension
of memory usage would dominate the anomaly score. (2) The time of computing LOF score of
observations increases superlinearly (O(nlogn) as the number of observations increases. This time
complexity is acceptable for online detection but is prohibitive for real time detection.
To address the above two limitations, we propose a simple yet efficient method to quantify the data
instance anomaly scores. The basic idea is that the anomaly score of an observation is quantified as the
amount of uncertainty it brings to the snapshot S(t). As the observations in a snapshot follow the normal
distribution, it is suitable to use the increase of entropy to measure the anomaly of an observation.
To quantify the anomaly score, two types of variance are needed: the variance and the leave-one-out
variance, where the leave-one-out variance is the variance of the distribution when one specific data
instance is not counted.
Algorithm 1 Snapshot Anomaly Quantification
1. Input: Snapshot { }() : |t

i it iS S s S S= ∈ , for m
its R∈ .

2. Output: Snapshot anomaly scores nQ R∈ .
3. create a m n× matrix 1 2[, ,..,]t t ntM s s s=
4. conduct 0-1 normalization on row of M;
5. initialize 1 2[, ,..., ,...,] 0mk mX x x x x= ← and ()

1 2[, ,] 0t n
t t ntQ Q Q Q= ← ;

6. (((1)), ((2)), (()))Tavgo S S S m← ΙΕ ΙΕ ΙΕ
7. 1 2(, ,...,)t avg t avg nt avgM s o s o s o← − − − ;
8. for 1k = to m do

9. 2

2
th rows of kx k M=

10. end for
11. for all ()t

its S∈ do
12. calculate itQ according to Equation (1);
13. end for
14. conduct 0-1 normalization of Q;
15. return Q
A naive algorithm to quantify the anomaly scores requires quadratic time (2()O dn dn+). By reusing
the intermediate results, we propose an improved algorithm with time complexity linear to the number
of streams. The pseudo code of the proposed algorithm is shown in Algorithm 1. As illustrated, matrix
M is used to store the distances between each dimension of the observations to the corresponding mean.

Making use of M, the leave-one-out variance can be quickly calculated as
2

1
k ik

ik
n M
n

σ
σ

−
=

−
, where kσ

denotes the variance of dimension k and ikσ denotes the leave-one-out variance of dimension k by

excluding its . As the entropy of normal distribution is 21 ln(2)
2

H eπ σ= , the increase of entropy for

observation its at dimension k can be calculated as

2

' ()
ln ln

(1)
ik k ik

k k k
k k

n x M
d H H

n x
σ
σ

−
= − = =

−
 (1)

Summing up all dimensions, the snapshot anomaly score of its is
1

m

it k
k

Q d
=

=∑ .Note that the

computation implicitly ignores the correlation between dimensions. This is because if an observation is
an outlier, the correlation effect would only deviate it further from other observations.

4.3 Stream Anomaly Quantification
As a stream is continuously evolving and its observations only reflect the transient behavior, snapshot
anomaly score alone would result in a lot of false-positives due to the transient fluctuation and slight
phase shift. To mitigate such situations, it is critical to quantify the stream anomaly by incorporating
the historical information of the stream.
An intuitive way to solve this problem is to calculate the stream anomaly score from the recent
historical instances stored in a sliding window. However, this solution has two obvious limitations: (1)
It is hard to decide the window length. A long sliding window would miss the real anomaly while a
short sliding window cannot rule out the false-positives. (2) It ignores the impact of observations that
are not in the sliding window. The observation that is just popped out from the sliding window would
immediately and totally lose its impact to the stream.

To well balance the history and the current observation, we use stream anomaly score iN to
quantify how significant a stream iS behaves differently from the majority of the streams. To
quantify iN , we exploit the exponential decay function to control the influence depreciation.
Supposing tΔ is a fixed time gap between any two adjacent observations, the influence of an

observation
xit
s at timestamp x k xt t k t+ = + Δ can be expressed as ()

x x

kt
it x k itQ t Q e λ−

+ = , where λ is

a parameter to control the decay speed. In the experiment evaluation, we will discuss how this
parameter affects the anomaly detection results.

To make the notation uncluttered, we use x it − to denote the timestamp that is i tΔ ahead of current

timestamp xt , i.e. x i xt t i t− = − Δ . Summing up the influences of all the historical observations, the

overall historical influence itI for current timestamp t can be expressed as Equation (2).

() () ()

(((
()

1 2 3

1 2 3

1 2 3

1 1

2 3

...

 ...

 ...

 .

x x x x

x x x

x x x

x x

it it x it x it x

it it it

it it it

it it

I Q t Q t Q t

Q e Q e Q e

e Q e Q e Q

e Q I

λ λ λ

λ λ λ

λ

− − −

− − −

− − −

− −

− − −

− − −

−

= + + +

= + + +

= + + +

= +

 (2)

 The stream anomaly score of stream iS is the weighted summation of the data instance anomaly

score of current observation itQ and the overall historical influence, i.e.,

 (1)
x x xit it itN Q Iα α= + − (3)

where α denote the weight of anomaly score of current observation and in this paper we set 0.5α =

that means we make no discrimination on the contextual information and the historical information of a

stream. As is shown in Equation (2), the overall historical influence can be incrementally updated with

cost (1)O for both time and space complexity. Therefore, stream anomaly scorer can be efficiently

computed.

Comparing to the transient fluctuation, the real anomaly is more durable. Figure 6 shows the

situations of a transient fluctuation (in the left subfigure) and a real anomaly (in the right subfigure). In

both situations, the stream behaves normally before timestamp xt . For the left situation, a transient

fluctuation occurs at timestamp 1xt + , and then the stream returns to normal at timestamp 2xt + . For the

right situation, an anomaly begins at timestamp 1xt + , lasts for a while till timestamp x kt + , and then the

stream returns to normal afterwards. Based on Figure 6, we show two properties about the stream

anomaly score. The properties of stream anomaly score make our framework insensitive to the transient

fluctuation and effective to capture the real anomaly.

transient
 fluctuationnormal normal

tx tx+1 tx+2 time

normal abnormal normal

tx tx+1 tx+2 timetx+k
Figure 6 Transient Fluctuation and Anomaly

PROPERTY 1. The increase of stream anomaly score caused by transient disturbance would decrease
over time.
PROOF. Suppose a transient fluctuation occurs at timestamp 1xt + in stream iS , in the worst case,

the difference between the data instance scores of the stream iS and a non-fluctuated stream jS

is at most
1 1x xupper it jtd N N m
+ +

= − ≤ , where m is the number of dimensions. For simplicity, we

use Euclidean distance to measure the difference between the data instance scores throughout this
paper.

Let
1 11 x xit jtI Iδ
+ +

= − . Before timestamp 1xt + , no stream is abnormal, so
1xit

I
+

 and
1xjt

I
+

 are close

enough and the expectation ()1 0E δ = . At timestamp 1xt + , a transient fluctuation occurs in stream

iS . According to Equation (3), the difference of the stream anomaly scores is

() ()1 1 1 1 1 1

1 1

1 1

1

(1) (1)

 () (1)

 ()

x x x x x x

x x

x x

it jt it it jt jt

it jt

it jt

N N Q I Q I

Q Q

Q Q

α α α α

α α δ

α

+ + + + + +

+ +

+ +

− = + − − + −

= − + −

≈ −

 (4)

At timestamp 2xt + , iS turns to be normal again, so
2xit

Q
+

 equals to
2xjt

Q
+

 on average. Let

2 22 x xit jtQ Qδ
+ +

= − , we can also get ()2 0E δ = . Accordingly, the difference between the

corresponding stream anomaly scores at timestamp 2xt + becomes

2 2 2 2 2 2

2 2 2 2

2 2

1 1

((1)) ((1))

 () (1)()

 =(1)()

 (1-)(()

x x x x x x

x x x x

x x

x x

it jt it it jt jt

it jt it jt

it jt

it it

N N Q I Q I

Q Q I I

I I

e Q Iλ

α α α α

α α

α

α

+ + + + + +

+ + + +

+ +

+ +

−

− = + − − + −

= − + − −

− −

≈ +
1 1

1 1

1 1

1 1 1 1 1 1

1

1

())

 (1-) ()

 (1-)() (1)

 (1-)()= ()

x x

x x

x x

x x x x x x

jt jt

it jt

it jt

it jt it jt it jt

e Q I

e Q Q

Q Q

Q Q Q Q N N

λ

λα δ

α α δ

α α

+ +

+ +

+ +

+ + + + + +

−

−

− +

= − +

< − + −

≈ − − = −

 (5)

According to Equation (6), it is known that at timestamp 2xt + , the effect of fluctuation at timestamp

1xt + decreases. □

PROPERTY 2. The increase of stream anomaly score caused by anomaly would be accumulated over
time.
PROOF. If a stream begins to be abnormal at timestamp 1xt + , its data instance scores would
become larger than those of the normal streams during the abnormal period. Suppose ε is the

difference of the data instance scores between the abnormal stream iS and a normal stream jS ,

at timestamp 1xt + . since both streams iS and jS are normal before timestamp 1xt + , we have

1 11 x xit jtI Iδ
+ +

= − and the expectation ()1 0E δ = . The difference of the stream anomaly scores is

1 1 1 1 1 1 1 1

() (1)() ()
x x x x x x x xit jt it jt it jt it jtN N Q Q I I Q Qα α α ε
+ + + + + + + +

Δ = − = − + − − ≈ − = (6)

At timestamp 2xt + , since the stream iS is still in the abnormal period, the difference of data
instance scores is still larger than or equal to ε , and the difference of stream anomaly scores
between these two streams at timestamp 2xt + is

2 2 2 2 2 2

1 1 1 1

1 1

' () (1)()

 (1) (() ())

 ()

 (1) .

x x x x x x

x x x x

x x

it it it jt it jt

it it jt jt

it jt

N N Q Q I I

e Q I Q I

e Q Q

e e

λ

λ

λ λ

α α

ε α

ε α

ε ε ε ε

+ + + + + +

+ + + +

+ +

−

−

− −

Δ = − = − + − −

≥ + − + − +

≈ + −

= + = + >

 (7)

According to Equation (7), we can conclude that once a stream becomes abnormal, the difference
between its stream anomaly score and those of the normal streams would increase over time. □

Similar properties can also be shown for the situation of slight shifts. A slight shift can be treated as
two transient fluctuations occur at the beginning and the end of the shift. In the next section, we will
leverage these two properties to effectively identify the anomalies in the ALERT STAGE.

4.4 Alert Triggering
Most of the stream anomaly detection solutions (Ge et al., 2010) identify the anomalies by picking
the streams with top-k anomaly scores or the ones whose scores exceed a predefined threshold.
However, these two approaches are not practical in real world applications for the following
reasons: (1) Threshold is hard to set. It requires the users to understand the underlying mechanism
of the application to correctly set the parameter. (2) The number of anomalies is changing all the
time. It is possible that more than k anomaly streams exist at one time, then the top-k approach
would miss these real anomalies.
To eliminate the parameters, we propose an unsupervised method to identify and quantify the

anomalies by leveraging the distribution of the anomaly scores. The first step is to find the median
of the stream anomaly scores medianN . If the distance between a stream anomaly score and the

median score is larger than the distance between the median score and the minimal score minN , the

corresponding stream is regarded as abnormal. As shown in Figure 7, this method implicitly
defines a dynamic threshold (shown as the dashed line) based on the hypothesis that there is no
anomaly. If there is no anomaly, the skewness of the anomaly score distribution should be small
and the median score should be close to the mean score. If the hypothesis is true,

minmedianN N− should be close to half of the distance between the minimum score and the maximum

score. On the contrary, if a score iN is larger than min2 ()medianN N× − , the hypothesis is violated

and all the streams with scores at least iN are abnormal.

Nmin Nmedian
implicit
threhold

scores of
abnormal
streams

stream anomaly scores
0

Nmin Nmedian implicit
threhold

stream anomaly scores
0

Figure 7 Abnormal Streams Identification

Besides the general case, we also need to handle one special case: a transient fluctuation occurs at
the current timestamp. According to Property (1) in Section 4.3, the effect of transient fluctuation
is at most upperd and it will monotonically decrease. Therefore, even a stream whose anomaly

score is larger than min2 ()medianN N× − , it can still be a normal stream if the difference between its

anomaly score and minN is smaller than upperd . To prune the false-positive situations caused by

transient fluctuation, the stream is instead identified as abnormal if

 ()()min minmax 2 ,i median upperN N N N d> − + (8)

Another thing needs to be noted is that the stream anomaly scores have an upper bound
1
upperd
e λ−−

.

According to the property of convergent sequence, the stream anomaly scores of all streams would
converge to this upper bound. When the values of stream anomaly scores are close to the upper
bound, they tend to be close to each other and hard to be distinguished. To handle this problem,
we reset all the stream anomaly scores to 0 whenever one of them close to the upper bound.
In terms of the time complexity, the abnormal streams can be found in ()O n time. Algorithm 2

illustrates the algorithm of stream anomalies identification. The median of the scores can be found
in ()O n in the worst case using the BFPRT algorithm (Blum et al., 1973). Besides finding the

median, this algorithm also partially sorts the list by moving smaller scores before the median and
larger scores after the median, making it trivial to identify the abnormal streams by only checking
the streams appearing after the median.

Algorithm 2 Stream Anomaly Identification

1. INPUT: λ , and unordered stream profile list { }1 ,..., nS S S= .

2. 2
nmIdx ⎡ ⎤← ⎢ ⎥⎢ ⎥

3. (),medianN BFPRT S mIdx←

4. ()min min . | 0iN S score i mIdx← ≤ ≤

5. max medianN N←

6. for i mIdx← to n do 7. if Condition (4) is satisfied then
8. Trigger alert for iS with score iN at current time.
9. if maxiN N> then
10. max iN N=
11. end if
12. end if
13. end for
14. if maxN is close to the upper bound then
15. Reset all stream anomaly scores.
16. end if

5. Experimental Evaluation
We evaluate our prototype implementation on a computing cluster by manually injecting a variety of

system faults. While experimental evaluation with real faults would be better, a major problem with
this approach is that we do not often have the luxury of allowing systems to run for many days to see
their behaviors. Further, it is not guaranteed that the system will experience a variety of faults during
the experimental time. The generally accepted solution to this problem is to inject the effects of faults
in a system and observe the behavior of the system under the injected faults (Barton et al., 1990). In our
experiments, we are able to test the proposed anomaly detection algorithm on dozens of fault effects
via fault injection, and show that our proposed framework can effectively and efficiently discover the
abnormal behaviors of the computer nodes with high precision and low latency.

5.1 Experiment Settings
We use a Linux cluster at Nanjing University of Science & Technology (NUST) as our experiment

platform, which consists of 76 computing nodes with 3.4GHz Intel I3 2 processors and connects each
node via a Gigabit LAN. The cluster is running Unbtun 12.04 and Hadoop 0.20.2, and a parameter
sweep application that is submitted on these nodes. The application solves dense linear equations by
using Gaussian Elimination method, thereby performing comparable computation tasks.

We randomly inject faults into the experiment platform by generating faulty threads in the back
end—separating from the application threads, and test whether different mechanisms can effectively
identify the faulty nodes. Three random factors are considered in our fault injection. First is to decide
how many nodes to inject faults, second is to determine which nodes to inject faults, and the last is to
decide the type(s) of fault(s) to inject. In our experiments, less than 10 percent of all nodes are
randomly selected for fault injection. The inclusion of the zero cases is to test our anomaly detection
mechanism under a fault-free environment. Totally, four typical types of faults are tested as follows:
l Memory leaking: On randomly selected nodes, besides the normal computation threads, we introduce

threads to generate memory leaking on the nodes, meaning that these threads continue consuming

memory without releasing it periodically.

l Unterminated CPU-intensive threads: On randomly selected nodes, the injected threads compete for the

CPU resource with the normal computation threads on the nodes.

l Frequent I/O operations: On randomly selected nodes, we introduce extra I/O intensive threads, which

keep reading and writing a large number of bytes from local disks.

l Network volume overflow: On randomly selected nodes, additional threads are introduced to keep

transferring a large number of packets among them.

The source code of injection program is available at https://github.com/yxjiang/system-noiser. We
select these faults based on the literature and our own experience on system log analysis (Gujrati et al.,
2007;Gu et al., 2008; Park et al., 2008). For example, we have found that some job hang failures are
triggered by deadlock, some network-related failures like packet loss are caused by heavy traffic
volume, and some node map file failures are due to frequent IO operations. In our experiments, these
faults are supposed to originate from the system rather than from the application. They can affect
multiple subsystems in a node, including memory, CPU, I/O, and network, and eventually lead to
system failure and/or performance degradation.

To collect the health-related data across the computing cluster for troubleshooting, we leverage a
distributed system monitoring tool (Xu & Xu, 2009) developed in our previous work to collect 14

features from CPU, memory, I/O, and network per node at the operating system layer. These features are
summarized in Table 1.

TABLE 1 FEATURE LIST

No. Features Description Category
1 CPU_USAGE_PROC CPU utilization

CPU
2 CPU_CTXSWITCH No. of context switches per second
3 USER_TIME_PROC1 process time spent in user mode
4 SYS_TIME_PROC process time spent in system mode
5 CPU_IO_PROC Percentage of time CPU blocked for I/O
6 FREE_MEM Available memory (MB)

memory
7 SWAPPED_MEM Virtual memory (MB)
8 PAGE_IN No. of virtual page paged in from swap per second
9 PAGE_OUT No. of virtual page paged out to swap per second
10 MEM_FRAGMENT No. of external memory fragmentation
11 IO_READ No. of disk read operations per second

IO
12 IO_WRITE No. of disk write operations per second
13 NIC_RXBYTE No. of received bytes by the NIC device per second

Network 14 NIC_TXBYTE No. of transmitted bytes by the NIC device per second

Then we deploy the proposed anomaly detection program on an external computer to analyze the
collected trace data in real time. To well evaluate our proposed framework, we terminate all the
irrelevant processes running on these nodes.

5.2 Results
We conduct two sets of experiments: 1) single-fault tests, where one type of faults are injected into

the system and 2) multi-fault tests, where multiple types of faults are injected into the system. For each
experiment, we conduct 10 runs and the results shown here are the averages of multiple runs. Through
these injections, we can answer the following questions about our framework: (1) whether our
framework can identify the anomalies with different types of root causes; (2) whether our framework
can identify multiple anomalies occurring simultaneously.

5.2.1 Single-fault Tests
In the first set of experiments, we inject one type of faults onto 0-7 randomly selected nodes and

assess whether our detection mechanism can correctly identify these abnormal nodes. The details of the
partial injections are listed in Table 2.

TABLE 2 LIST OF INJECTIONS

NO. Time Period Node Description
1

[100,150]
2,23 Keep CPU utilization above 95

2 34,48 keep number of IO operations per second above 100

3
[150,250]

17 Keep memory usage at 70%
4 55 keep number of packets transferred per second above

15000
5

[300,400]
23 Keep CPU utilization above 95

6 69 Keep memory usage at 70%
7 48 keep number of IO operations per second above 100
8

[400,450]
17 Keep memory usage at 70%

9 34 keep number of IO operations per second above 100
10

[500,550]
48 keep number of IO operations per second above 100

11 69 Keep memory usage at 70%
12

[700,800]

17 Keep memory usage at 70%
13 23 Keep CPU utilization above 95
14 55 keep number of packets transferred per second above

15000
15

[800,850]
2 Keep CPU utilization above 95

16 69 Keep memory usage at 70%
17 34,48 keep number of IO operations per second above 100
18

[900,950]
2 Keep CPU utilization above 95

19 69 Keep memory usage at 70%
Figure 8 illustrates the results of this experiment by plotting the actual injections (top 7 sub-figures)

as well as the captured alerts (the bottom subplots), where the x-axis represents the time and y-axis
represents the idled CPU utilization, idle memory usage, the number of IO operations per second, and
the number of packets transferred per second or the number of anomalies in each timestamp. We
evaluate the framework from three aspects through carefully-designed injections.

Figure 8 Single fault injections and the captured alerts

1. Single dimension (e.g. idle CPU utilization or idle memory usage) of a single stream behaves
abnormally. This is the simplest type of anomalies. It is generated by injections No.5 and No.8 in
Table 2. As shown in Figure 8, our framework effectively identifies these anomalies with the
correct time periods.

2. Multiple streams behave abnormally simultaneously. This type of anomalies is generated by
injection No.5, No.6 and No.8. During the injection time period, our framework correctly

identifies both anomalies (on node 23, node 48 and node 69).
3. Transient fluctuation and slight delay would not cause false-positive. As this experiment is

conducted in a distributed environment, delays exist and vary for different nodes when executing
the injections. Despite this intervention, our framework still does not report transient fluctuations
and slight delays as anomalies.

Based on the evaluation results, we find that our solution is able to correctly identify all the
anomalies in all these three different cases.

Further, we will delve into the details about the effectiveness and efficiency of our framework.
To quantitatively measure the performance, we use F-measure to measure the accuracy and
detection time delay to measure the efficiency. The precision and recall in computing F-measure
are quantified according to the ground truth shown in Table 2. To investigate how λ affects the
results, we conducted experiments with various λ values.

The experimental results of how λ affects the results accuracy is illustrated in Figure 9. To
mitigate the randomness caused by the distributed environment, the precision, recall, and the
F-measure are averaged with 10 runs. As shown, for the example of injecting CPU-related faults,
as λ increases, precision increases but recall decreases. The reason for the decreasing of recall is
as follows: The increase of λ causes the upper bound of stream anomaly scores to decrease and
indirectly increases the reset frequency. After each reset of stream anomaly scores, some real
anomalies would be skipped and they would reduce the recall. The result shows that the highest
F-measure is 0.9351 while the lowest is 0.9032, which is stable. This is due to the changing of
precision and recall cancels each other and makes F-measure insensitive to λ .This conclusion
holds for other three cases. Last but not least, we also observe that detecting CPU-related faults
has the highest accuracy, followed by IO-related faults, while detecting memory-related faults has
the lowest accuracy, followed by network-related faults. We attribute this to the fact that
CPU-related faults and IO-related faults can easily propagate throughout the system.

Figure 9 F-measure versus reset threshold

In terms of the time delay, our proposed framework is able to identify the anomalies in real time.
As shown in Figure 10, the experimental results indicate that the average time delay in all the

experiments is less than 6 seconds. We also notice that there is an obvious variance of the time
delay due to the experiments that are conducted in a distributed system, where the environment is
highly dynamic. Since the delay consists of network delay, injection execution delay, and the
detection delay, the actual delay of our detection method should be less than the observed value.

Figure 10 Time Delay versus reset threshold

5.2.2 Multi-fault Tests
In this set of experiments, different types of faults are simultaneously injected onto 0-3 nodes in

the system. We have conducted experiments with two, three and four types of faults respectively.
However, the results for the cases of three and four types of faults, are very similar to those for
two-fault tests. Thus, we focus on discussion of the results for two-fault tests. The details of the
injections are listed in Table 3.

TABLE 3 LIST OF INJECTIONS WITH MULTIPLE TYPES OF FAULTS

NO. Time Period Node Description

1
[100,150]

2 Keep CPU utilization above 95 and keep number of packets
transferred per second above 15000

2 48 keep number of IO operations per second above 100 and Keep
memory usage at 70%

3
[300,400]

23 Keep CPU utilization above 95 and keep number of IO operations
per second above 100

4 48 keep number of packets transferred per second above 15000 and
Keep memory usage at 70%

5
[500,550]

2 Keep CPU utilization above 95 and keep number of IO operations
per second above 100

6 48 keep number of IO operations per second above 100 and Keep
memory usage at 70%

7
[650,750]

2 Keep memory usage at 70% and keep number of packets transferred
per second above 15000

8 23 keep number of IO operations per second above 100 and keep
number of packets transferred per second above 15000

9 [700,800] 23 Keep CPU utilization above 95 and keep number of packets
transferred per second above 15000

10 [800,850] 48 Keep CPU utilization above 95 and Keep memory usage at 70%
Similar to Figure 8, Figure 11 illustrates the results of this experiment by plotting the actual

injections (top 11 sub-figures) as well as the captured alerts (the bottom subplots). As shown in
Figure 8, our framework effectively identifies these anomalies with the correct time periods under
the case of injecting multiple faults simultaneously.

Figure 11 Multi-fault Injections and the captured alerts

As λ increases, precision increases but recall decreases. Thus, we will discuss the
effectiveness and efficiency of our framework from the results with the worst recall for two-faults
tests listed in the Table 4. Consistent with the conclusion that detecting CPU-related faults has the
highest accuracy, followed by IO-related faults, while detecting memory-related faults has the
lowest accuracy, followed by network-related faults draw from Figure 9, we can also find that
there is a higher detection accuracy when injecting CPU-related faults or IO-related faults than the
case of injecting memory-related faults or network-related faults. Moreover, the worst accuracy
we got is 0.8878 in the case of injections of memory-related faults and network-related ones
simultaneously. But this result is still better than both results, 0.7783 and 0.8764, got in the case of
injecting single memory-related fault or single network-related fault respectively. Similarly, we
can find that this conclusion always holds in the remaining cases, which shows that our detection
solution can work well under complex runtime environments. In terms of the time delay, the
experimental results indicate that the time delay in all the experiments is less than 5 seconds and
less than the average time delay in case of injecting four single faults respectively, which shows
that our proposed framework can also identify the anomalies in real time in case of multi-fault
tests.

Table 4 Results in case of multi-fault tests

 Multiple Faults Single Fault
Types

of
Faults

CPU
&

Mem.

CPU
&

 IO

CPU
&

Net.

Mem.
&
IO

Mem.
&

Net.

IO
&

Net.
CPU Mem. IO Net.

F-Score 0.9004 0.9467 0.9105 0.8999 0.8878 0.9073 0.9002 0.7783 0.8846 0.8764

Avg.
F-score 0.9087 0.8598

Time
Delay 4.2 4.2 4.2 4.3 4.3 4.3 4.3 4.7 5.3 4.4

Avg.
Time
Delay

4.25 4.675

5.2.3 Comparison Analysis
To demonstrate the superiority of our framework, we also conduct experiments to identify the

anomalies with the same injection settings described in Figure 11 using the alternative methods
including contextual anomaly detection (CAD) and rule-based continuous query (Rule-CQ). The
contextual anomaly detection is equivalent to the snapshot scoring in our framework. For the
rule-based continuous query, we define four rules to capture three types of anomalies, including
high CPU utilization (rule 1), high memory usage (rule 2), high number of IO operations per
second (rule 3) and high number of network packets per second (rule 4) respectively. Different
combinations of these rules are used in the experiments.

For Rule-CQ method, we experiment all the combinations: C1 (rule 1 or rule 2), C2 (rule 1 or
rule 3), C3 (rule 1 or rule 4), C4 (rule 2 or rule 3), C5 (rule 2 or rule 4) and C6 (rule 3 or rule 3),
and report the results. Table 5 quantitatively shows the precision, recall, and F-measure of these
methods as well as the results of our method. The contextual anomaly detection method generates
a lot of false alerts. This is because this method is sensitive to the transient fluctuation. Once an
observation deviates from the others at a timestamp, an alert would be triggered. Similarly, the
Rule-CQ method also generates many false alerts since it is difficult to use rules to cover all the
anomaly situations. The low-precision and high-recall results of CAD and Rule-CQ indicate that
all these method are too sensitive to fluctuations.

Table 5 Measures of different methods performed on data streams of the distributed environment

Measure
Algorithm

precision Recall F-measure

CAD 0.4219 1.0000 0.5935
C1:Rule 1||2 0.3382 1.0000 0.5055
C2:Rule 1||3 0.5423 1.0000 0.7032
C3:Rule 1||4 0.4642 1.0000 0.6340
C4:Rule 2||3 0.3244 1.0000 0.4899
C5:Rule 2||4 0.1878 1.0000 0.3154
C6:Rule 3||4 0.2182 1.0000 0.3582

Our algorithm
 (worst case) 0.9604 0.8623 0.9087

6. Related Works
Leveraging machine learning and data mining techniques to facilitate the system management is

always a hot research direction in both the communities of system and data mining (Zheng et al.,
2014; Jiang et al., 2011). In this direction, automatic anomaly detection is an increasing popular
topic that has drawn many interests from the researchers (Chandola, Banerjee, & Kumar 2009).
Over the recent years, continuously efforts are paid towards this topic. Generally speaking, there
are mainly two groups of related research directions: the model-based anomaly detection and the
data-driven anomaly detection.

A model-based approach derives a probabilistic or analytical solution by modeling the system
in a parameterized way. Hellerstein et al. proposed a model that is able to quantify the severity of
anomaly in an unsupervised approach. This anomaly detection model is able to trigger the
warnings when a deviation from the normal status learned by the model is detected (Hellerstein,
Zhang, & Shahabuddin, 2001). Salehi et al. proposed an ensemble model based method to identify
the anomalies in switching data streams (Salehi et al. 2014). Vaidynathan and Cross proposed an
adaptive statistical data fitting method called MSET to enable the automatic anomaly detection
using statistical testing (Vaidyanathan & Cross, 2003). Moreover, Hamerly and Elkan proposed a
naive Bayesian-based model for disk failure prediction (Hamerly & Elkan, 2001) and Garg,
Puliafito and Trivedi proposed a Semi-Markov reward model (Garg, Puliafito, & Trivedi, 1995),
both focusing on failure detection using statistical or automation techniques. Although these
proposed works are able to alleviate the management burden for system administrators, they ask
the people to input model parameters, which is difficult for the people without solid mathematic or
data mining background. Without properly setting of parameters, the model-based methods would
have the difficulty of generating and maintaining an accurate model, especially given the
unprecedented size and complexity of large-scale systems.

Besides the previously mentioned related work, recently, data mining and machine learning
have received growing attention for failure diagnosis and prognosis. These methods extract fault
patterns from system normal behaviors and detect abnormal observations based on the learned
knowledge without assuming a priori model ahead of time. For example, in (Sahoo et al.,
2003;Vilalta & Ma, 2002), the authors have presented several methods to predict failure events in
IBM clusters. Fox et al. proposed an anomaly detection approach that considers both simple
operational statistics and structural change in a complex distributed system (Fox, Kiciman, &
Patterson, 2004). Fu and Xu (2007) have developed a framework called hPREFECTS for failure
prediction in networked computing systems. Other representative studies include system log
analysis (Oliner & Stearley, 2007; Schroeder & Gibson, 2006) and fault detection in syslogs
(Stearley & Oliner, 2008).

Different from the model-based method, our approach belongs to the data-driven category (i.e.,
making decisions by gathering and analyzing large amounts of data), it focuses more on building a
systematic framework for real time anomaly detection over data streams from large-scale systems
(Jiang et al. 2014).

With the emerging requirements of mining data streams, several techniques have been proposed
to handle the data incrementally (Jiang et al., 2013; Jiang et al., 2014; Liang et al., 2008). Pokrajac
et al. (2007) modified the static Local Outlier Factor (LOF) method as an incremental algorithm,
and then applied it to find data instance anomalies from the data stream. Takeuchi and Yamanishi
(2006) trained a probabilistic model with an online discounting learning algorithm, and then use
the training model to identify the data instance anomalies. Angiulli and Fassetti (2007) proposed a
distance-based outlier detection algorithm to find the data instance anomalies over the data stream.
Wu et al. (2014) proposed a data structure called RS-Forest for modeling the density anomalies
over data streams. Pham et al (2014) proposed a residual space analysis based method to detect the
anomalies in a large-scale data stream network. Liang et al. (2008) improved the efficiency of
Lee’s work by only computing the distances among the sub-trajectories in the same grid. As the
aforementioned two algorithms require accessing the entire dataset, they cannot be adapted to
trajectory streams. To address the limitation, Bu et al. (2009) proposed a novel framework to

detect anomalies over continuous trajectory streams. They built local clusters for trajectories and
leveraged efficient pruning strategies as well as indexing to reduce the computational cost.
However, their approach identified anomalies based on the local-continuity property of the
trajectory, while our method does not make such an assumption. Our approach is close to the work
of (Ge et al.,2010), where they proposed an incremental approach to maintain the top-K evolving
trajectories for traffic monitoring. However, their approach mainly focused on the geospatial data
instances and ignored the temporal correlations, while our approach explicitly considers the
temporal information of the data instances. Moreover, all the aforementioned works focused on
the anomaly detection of a single stream, while our work is designed to discover the contextual
collective anomalies over multiple data streams.

7. Conclusions

Anomaly detection is always a top priority for distributed system management and it draws the

attention of many researchers in recent years. Due to the increasing of data scale and data
complexity, existing anomaly detection methods gradually lose their abilities. To improve the
effectiveness and efficiency of anomaly detection and to identify new types of anomaly, in this
paper, we propose a real time anomaly detection framework to identify the contextual collective
anomalies from a collection of streams. Our proposed method firstly quantifies the snapshot level
anomaly of each stream based on the contextual information. Then the contextual information and
the historical information are used in combination to quantify the anomaly severity of each stream.
Based on the distribution of the stream anomaly scores, an implicit threshold is dynamically
calculated and the alerts are triggered accordingly. To demonstrate the usefulness of the proposed
framework, several sets of experiments are conducted to demonstrate its effectiveness and
efficiency.

There are some future works we need to do to address the limitations of the current solution.
The current proposed method can only be applied to the homogeneous distributed systems. In the
real world, there are a lot of heterogeneous distributed systems that the behaviors of the nodes are
not all the same. For example, the master node and the slave nodes would behave differently in the
Hadoop distributed systems. In order to conduct the anomaly detection on this kind of distributed
systems, a hybrid method that combines offline learning and online learning should be designed.
For such a solution, the offline learning techniques would be used to learn the signatures of the
normal behaviors of the system its history. Then the learned model would be applied to conduct
the online learning for real time anomaly detection. Due to the highly dynamics of the distributed
systems, this solution should be able to self-adaptive.

8. ACKNOWLEDGEMENT
The work was supported in part by the National Natural Science Foundation of China under

grant number 61300053, the National Science Foundation under grants DBI-0850203,
HRD-0833093, CNS-1126619, and IIS-1213026, the U.S. Department of Homeland Security
under grant Award Number 2010-ST-06200039, Army Research Office under grant number
W911NF-10-1-0366 andW911NF-12-1-0431, and an FIU Dissertation Year Fellowship.

9. References

J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman (2008). Efficient pattern matching over
 event streams. In Proceedings of SIGMOD.
F. Anguilli and F. Fassetti (2007). Detecting distance-based outliers in streams of data. In
 Proceedings of CIKM.
A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava, and J.
 Widom (2003). STREAM: the stanford stream data manager. In Proceedings of the 2003 ACM

SIGMOD international conference on Management of data.
J. Barton, E. Czeck, Z. Segall, and D. Siewiorek (1990). “Fault Injection Experiments Using
 FIAT,” IEEE Trans. Computers, vol. 39, no. 4.
M. Blum, R. Floyd, V.Pratt, R.Rivest, and R. Tarjan (1973). Time bounds for selection. Journal of
 Computer System Science.
M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander (2000). Lof: Identifying density-based local
 outliers. In SIGMOD.
Y. Bu, L. Chen, A. W.-C. Fu, and D. Liu (2009). Efficient anomaly monitoring over moving
 object trajectory streams. In Proceedings of KDD.
V. Chandola, A. Banerjee, and V. Kumar (2009). Anomaly detection: A survey. ACM Computing
 Surveys.
S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein, W. Honh, S.
 Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah (2003). TelegraphCQ: continuous
 dataflow processing[C]//Proceedings of the 2003 ACM SIGMOD international conference on
 Management of data. ACM.
J. Dean and S. Ghemawat (2008). MapReduce: simplified data processing on large clusters[J].
 Communications of the ACM, 2008, 51(1): 107-113.
R. A. Fisher, F. Yates, et al (1949). Statistical tables for biological, agricultural and medical
 research. Statistical tables for biological, agricultural and medical research., (Ed. 3.).
A. Fox, E. Kiciman, and D. A. Patterson (2004). “Combining statistical monitoring and
 predictable recovery for self-management,” in Proc. of WOSS, 2004.
S. Fu and C. Xu (2007). “Exploring Event Correlation for Failure Prediction in Coalitions of
 Clusters,” Proc. Conf. Supercomputing (SC ’07).
S. Garg, A. Puliafito, and K. Trivedi (1995). “Analysis of Software Rejuvenation Using Markov
 Regenerative Stochastic Petri Net,” Proc. Sixth Int’l Symp. Software Reliability Eng.
Y. Ge, H. Xiong, Z.-H. Zhou, H. Ozdemir, J. Yu, and K. C. Lee (2010). Top-eye: Top-k evolving
 trajectory outlier detection. In Proceedings of CIKM.
M. Grottke and K. Trivedi (2007). “Fighting Bugs: Remove, Retry, Replicate and Rejuvenate,”
 IEEE Computer, vol. 40, no. 2.
J. Gu, Z. Zheng, Z. Lan, J. White, E. Hocks, and B.H. Park (2008). “Dynamic Meta-Learning for
 Failure Prediction in Large-Scale Systems: A Case Study,” Proc. Int’l Conf. Parallel Processing
 (ICPP).
P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White (2007). “A Meta-Learning Failure Predictor
 for Blue Gene/L Systems,” Proc. Int’l Conf. Parallel Processing (ICPP).
M. Gupta, A. B. Sharma, H. Chen, and G. Jiang (2013). Context-aware time series anomaly

 detection for complex systems. In WORKSHOP NOTES, page 14.
G. Hamerly and C. Elkan (2001), “Bayesian Approaches to Failure Prediction for Disk Drives,”
 Proc. Int’l Conf. Machine Learning (ICML).
J. Hellerstein, F. Zhang, and P. Shahabuddin (2001). “A Statistical Approach to Predictive
 Detection,” Computer Networks: The Int’l J. Computer and Telecomm. Networking, vol. 35,pp.
 77-95.
G. Jiang, H. Chen, and K. Yoshihira (2006). Modeling and tracking of transaction flow dynamics
 for fault detection in complex systems. Dependable and Secure Computing, IEEE Transactions
 on, 3(4):312–326.
Y. Jiang, C.-S. Perng, T. Li, and R. Chang (2011). ASAP self-adaptive prediction system for
 instant cloud resource demand provisioning. In Proceedings of ICDM.
Y. Jiang, C.-S. Perng, T. Li, and R. Chang (2013). Cloud Analytics for Capacity Planning and

Instant VM Provisioning. Network Management and System Management, IEEE Transactions
on,10(3): 312–325.

Y. Jiang, C.-S. Perng, and T. Li (2014). META: Multi-resolution Framework for Event
Summarization. SIAM International Conference on Data Mining.

Y. Jiang, C. Zeng, J. Xu, T. Li (2014). Real time contextual collective anomaly detection over
multiple data streams. SIGKDD Workshop on Outlier Detection and Description under Data
Diversity.

J.-G. Lee, J. Han, and X. Li (2008). Trajectory outlier detection: A partition-and-detect
 framework. In ICDE.
A. Mirgorodskiy, N. Maruyama, and B. Miller (2006). “Problem Diagnosis in Large-Scale
 Computing Environments,” In Proc. Conf. Supercomputing (SC).
B. Mozafari, K. Zeng, and C. Zaniolo (2012). High-performance complex event processing over
 xml streams. In SIGMOD.
A. Oliner and J. Stearley (2007). “What Supercomputers Say: A Study of Five System Logs,”
 Proc. Int’l Conf. Dependable Systems and Networks (DSN).
B. Park, Z. Zheng, Z. Lan, and A. Geist (2008). “Analyzing Failure Events on ORNL’s Cray
 XT4,” Proc. Conf. Supercomputing (SC ’08), (research poster).
D. Pham, S.Venkatesh, M. Lazarescu, S. Budhaditya (2014). Anomaly detection in large-scale

data stream networks. Data Mining and Knowledge Discovery, 28(1), 145-189.
D. Pokrajac, A. Lazarevic, and L. J. Latecki (2007). Incremental local outlier detection for data
 streams. In Proceedings of CIDM.
R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. Ma, R.Vilalta, and A. Sivasubramaniam
 (2003). “Critical Event Prediction for Proactive Management in Large-Scale Computer
 Clusters,” In Proc. of ACM Special Interest Group on Knowledge Discovery in Data SIGKDD.
M. Salehi, C. A. Leckie, M. Moshtaghi, T. Vaithianathan (2014). A Relevance Weighted

Ensemble Model for Anomaly Detection in Switching Data Streams. Advances in Knowledge
Discovery and Data Mining.

B. Schroeder and G. Gibson (2006), “A Large-Scale Study of Failures in High Performance
 Computing Systems,” Proc. Int’l Conf. Dependable Systems and Networks (DSN).
J. Stearley and A. Oliner (2008), “Bad Words: Finding Faults in Spirit’s Syslogs,” Proc.
 Workshop Resiliency in High Performance Computing.
V. Tabatabaee and J. Hollingsworth (2007). Automatic Software Interference Detection in

 Parallel Applications,” Proc. Conf. Supercomputing (SC).
J.ichi Takeuchi and K. Yamanishi (2006). A unifying framework for detecting outliers and change
 points from time series. IEEE Transactions on Knowledge and Data Engineering.
L. Tang, C. Tang, L. Duan, Y. Jiang, C. Zeng, and J. Zhu (2008). Movstream: An efficient
 algorithm for monitoring clusters evolving in data streams. In Proceedings of Granular
 Computing.
L. Tang, C. Tang, Y. Jiang, C. Li, L. Duan, C. Zeng,and K. Xu (2008). Troadgrid: An efficient
 trajectory outlier detection algorithm with grid-based space division. In Proceedings of NDBC.
K. Vaidyanathan and K. Gross (2003), “MSET Performance Optimization for Detection of
 Software Aging,” Proc. Int’l Symp. Software Reliability Eng. (ISSRE).
Jian Xu, Man-wu Xu (2009). A Performance Monitoring Tool for Predicting Degradation in
 Distributed Systems. The 2009 International Conference on Web Information Systems and
 Mining,11:669-673.
L. G. Valiant (1990). A bridging model for parallel computation. Communications of the ACM,
 33(8):103-111.
R. Vilalta and S. Ma (2002). “Predicting Rare Events in Temporal Domains,” Proc. Int’l Conf.
 Data Mining (ICDM).
K. Wu, K. Zhang, W. Fan, A. Edward, P. Yu (2014). RS-Forest: A Rapid Density Estimator for

Streaming Anomaly Detection. Proc. Int’l Conf. Data Mining (ICDM).
L. Zheng, C. Zeng, L Li, Y. Jiang, W. Xue, J. Li, C. Shen, W. Zhou, H. Li, L. Tang, T. Li, B.

Duan, M. Lei, P. Wang (2014). Applying data mining techniques to address critical process
optimization needs in advanced manufacturing. In Proc. of ACM Special Interest Group on
Knowledge Discovery in Data SIGKDD.

