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Abstract: Identifying the anomalies is a critical task to maintain the uptime of the monitored 
distributed systems. For this reason, the trace data collected from real time monitors are often 
provided in form of streams for anomaly detection. Due to the dramatic increase of the scale of 
modern distributed systems, it is challenging to effectively and efficiently discover the anomalies 
from a voluminous amount of noisy and high-dimensional data streams. Moreover, the evolving of 
the system infrastructures brings new anomaly types that cannot be generalized as existing ones, 
making the existing anomaly detection solutions unavailable. 
To address these issues, in this paper, we introduce a new type of anomalies called contextual 
collective anomaly. Then we propose a framework to discover this type of anomaly over a 
collection of data streams in real time. A primary advantage of this solution is that it can 
accurately identify the anomalies by taking both the contextual information and the historical 
information of a data stream into consideration. Also, the proposed framework is designed in a 
way with a low computational cost, and is able to handle large-scale data streams. To demonstrate 
the effectiveness and efficiency of our proposed framework, we empirically validate it on a real 
world cluster. 
Keywords: Anomaly detection; multiple data streams; contextual anomaly; collective anomaly 
 

1. Introduction 
A homogeneous distributed environment generally consists of multiple computing nodes with 

the same hardware configuration, software environment and similar workloads. A typical example 
of the homogeneous distributed environment is the load-balanced system, which is widely used at 
the backend by the popular large-scale web sites like Amazon, Google and Facebook. In such a 
distributed environment, the computing nodes in a distributed system would behave similar to 
each other in the ideal situation (no anomaly and no occasional fluctuation). In such a situation, 
the observations (in terms of monitored metrics) of the nodes should be close to each other at any 
time. In practice, node anomaly might be caused by a variety of reasons, such as software aging, 
resource contention, and hardware failure, making the affected nodes behave differently from 
other nodes (Grottke & Trivedi, 2007). Overtime, a system is becoming more instable and it 
would fail to function properly due to the existence of anomaly nodes. Although the health-related 
data are collected across the system for troubleshooting, unfortunately how to effectively and 
efficiently identify anomalies and their root causes in the data has never been as straightforward as 
one would expect.  



Traditionally, domain experts are responsible for examining the data with their experience and 
expertise. Such a manual process is time-consuming, error-prone, and even worse, not scalable. 
Due to the data scale and complexity, event the domain experts cannot fully identify the true 
anomalies and may also missing some deeply hidden anomalies. Moreover, as the behaviors of the 
distributed environment are likely changing over time, such temporal dynamics is difficult to be 
captured by the domain experts, as they may not be able to refresh their knowledge quick enough.  

As the size and complexity of computer systems continue to grow, the difficulty for automated 
anomaly identification increases dramatically and it have far beyond the processing capability of 
the domain experts. The traditional expert systems that encoded the rules of the domain experts 
can only partially addressed the data scale problem. However, they cannot solve the complexity 
problem. This is because a distributed environment is dynamic. It is not likely such changing 
behaviors can be well captured by the static rules. Overtime, the deployed expert system based 
anomaly detection would gradually be outdated, as the rate of false positive and false negative 
would increase. 

There are quite a few data processing and anomaly analysis infrastructures to enable automated 
anomaly identification. However, these existing data processing infrastructures are designed based 
on inherent non-stream programming paradigm such as Map/Reduce (Dean & Ghemawat, 2008), 
Bulk Synchronous Parallel (BSP) (Valiant, 1990), and their variations. To reduce the processing 
delay, these applications have gradually migrated to stream processing engines (Arasu et al., 2003; 
Chandrasekaran et al., 2003). As the infrastructures have been changed, anomalies in these 
applications are required to be identified online across multiple data streams. The new data 
characteristics and analysis requirements make existing anomaly detection solutions no longer 
suitable. 

To address the problem, in this paper, we present a real time mechanism for node anomaly 
detection by taking both the node context information and the node historical information into 
consideration from multiple data streams.  

1.1 A Motivating Example 
Figure 1 illustrates the scenario of monitoring a 6-node computer cluster, where the x-axis 

denotes the time and the y-axis denotes the CPU utilization. The cluster has been monitored 
during time [0, t6]. At time t2, a computing task has been submitted to the cluster and the cluster 
finishes this task at time t4. As shown in Figure 1, two nodes (marked in dashed line) behave 
differently from the majority during some specific time periods. Node 1 has a high CPU utilization 
during 1 2[ , ]t t and a low CPU utilization during 3 4[ , ]t t  while node 2 has a medium CPU 
utilization all the time. These two nodes with their associated abnormal periods are regarded as 
anomalies. Besides these two obvious anomalies, there is a slight delay on node 3 due to the 
network delay and a transient fluctuation on node 4 due to some random factors. However, they 
are normal phenomena in distributed systems and are not regarded as anomalies. 



 

Figure 1 CPU utilization of a computing cluster 

A quick solution for stream based anomaly detection is to leverage the techniques of complex 
event processing (CEP) [3, 4] by expressing the anomalies detection rules with corresponding 
continuous query statements. This rule-based detection method can be applied to the scenarios 
where the anomaly can be clearly defined. Besides using CEP, several stream based anomaly 
detection algorithms have also been proposed. They either focus on identifying the contextual 
anomaly over a collection of stable streams (Bu et al., 2009) or the collective anomaly from one 
stream (Anguilli & Fassetti, 2007; Pokrajac, Lazarevic, & Latecki, 2007). These existing methods 
are useful in many applications but they still cannot identify certain types of anomalies.  

Figure 2 plots the ground truth as well as all the anomalies identified by existing methods 
including the CEP query with three different rules (Rule-CQ1, 2, and 3), the collective based 
anomaly detection (Breunig et al., 2000), and contextual based anomaly detection (Chandola, 
Banerjee, & Kumar, 2009). 

 

Figure 2 Identified anomalies in the motivating example (The box lists the IDs of abnormal streams during 

specified time period) 

To detect the anomalies via CEP query, the idea is to capture the events when the CPU 
utilizations of nodes are too high or too low. An example query following the syntax of (Agrawal 
et al., 2008) can be written as follows: 

PATTERN SEQ(Observation o[])  
WHERE avg(o[].cpu) oper threshold (AND|OR avg(o[].cpu) oper threshold)* 
WITHIN {length of sliding window} 

where the selection condition in WHERE clause is the conjunction of one or more boolean 
expressions, oper is one of f>, <, <>, ==g, and threshold can be replaced by any valid expression. 
However, CEP queries are unable to correctly identify the anomalies in Figure 1 no matter how 
the selection conditions are specified. For instance, setting the condition as avg(o[].cpu) > 
{threshold} would miss the anomalies during 3 4[ , ]t t  (Rule-CQ1); setting the condition as 



avg(o[].cpu) < {threshold} would miss the anomalies during 1 2[ , ]t t  (Rule-CQ2); and combining 
the two above expressions with OR still does not work (Rule-CQ3). Besides deciding the selection 
condition, how to rule out the situations of slight delays and transient fluctuations, and how to set 
the length of the sliding windows are all difficult problems when writing the continuous queries. 
The main reason is that the continuous query statement is not suitable to capture the contextual 
information where the “normal” behaviors are also dynamic (the utilizations of normal nodes also 
change over time in Figure 1). 

Compared with CEP based methods, contextual anomaly detection methods (such as Gupta et 
al., 2013; Jiang, Chen, & Yoshihira, 2006) achieve a better accuracy as they utilize the contextual 
information of all the streams. However, one limitation of contextual based methods is that they 
do not leverage the temporal information of streams and are not suitable for anomaly detection in 
dynamic environments.  

Therefore, these methods would wrongly identify the slightly delayed and fluctuated nodes as 
anomalies. For the given example, collective anomaly detection methods do not work well neither. 
This is because these methods would identify the anomaly of each stream based on its normal 
behaviors. Once the current behavior of a stream is different from its normal behaviors (identified 
based on historical data), it is considered as abnormal. In the example, when the cluster works on 
the task during time period 3 4[ , ]t t , all the working nodes would be identified as abnormal due to 
the sudden burst. 

1.2 Contributions 
In this paper, we propose an efficient solution to identify this special type of anomaly in the 

above example, named contextual collective anomaly. Contextual collective anomalies bear the 
characteristics of both contextual anomalies and collective anomalies. This type of anomaly is 
common in homogeneous distributed system monitoring, where data come from distributed but 
homogeneous data sources. We will formally define this type of anomaly in Section 2. 

Besides proposing an algorithm to discover the contextual collective anomalies over a 
collection of data streams, we also consider the scale-out ability of our solution and develop a 
distributed streaming processing framework for contextual collective anomaly detection. More 
concretely, our contributions can be described as follows: 
l We discuss the existing work of anomaly detection, especially streaming anomaly detection, 

and explain why the current types of anomalies cannot fully cover all the situations and why 
we need a new anomaly detection framework. 

l We provide the definition of contextual collective anomaly and propose an incremental 
algorithm to discover the contextual collective anomalies in real time. The proposed 
algorithm combines the contextual as well as the historical information to effectively identify 
the anomalies. 

l We propose a flexible three-stage framework to discover such anomalies from multiple data 
streams. This framework is designed to be distributed and can be used to handle large scale 
data by scaling out the computing resources. Moreover, each component in the framework is 
pluggable and can be replaced if a better solution is proposed in the future. 

l We empirically demonstrate the effectiveness and efficiency of our solution through the real 
world scenario experiments and show that our solution has a better accuracy when system 
appears CPU-related faults, or IO-related faults, or a combinatory of these faults. 



1.3 The Paper Outline 
The rest of the paper is organized as follows. Section 2 gives a definition of contextual 

collective anomaly and then presents the problem statement. Section 3 provides an overview of 
our proposed anomaly detection framework. We introduce the three-stage anomaly detection 
algorithm in detail in Section 4. Section 5 presents the result of experimental evaluation. The 
related works are discussed in Section 6. Finally, we conclude in Section 7. 

2. The Problem Statement 
In this section, we first give the notations and definitions that are relevant to the anomaly 

detection problem and make it clear through Figure 3. Then, we formally define the problem 
based on the given notations and definitions. 
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Figure 3 Data stream, stream collection and snapshot 

Definition 1. Data Stream. Given a homogeneous distributed environment consisting of n 
computing nodes, for any a node i,1 i n≤ ≤ , a data stream of this node, iS , is an ordered infinite 

sequence of data instances { }1 2 3, , ,...i i is s s . Each data instance its is the observation of data stream 

iS at timestamp t and arrives at a fixed time interval, where ( ) ( ) ( )
1 2

Tt t t m
it i i mis f f f R⎡ ⎤= ∈⎣ ⎦L , and 

m is the number of features that are defined as any individually measurable variables of the node 
being observed, such as CPU utilization, available memory size, I/O, network traffic, etc. Note 
that all the observations have the same dimension. 
A fault typically induces changes in multiple subsystems of a node, such as CPU, memory, I/O 
and network. For example, a memory leak may affect the amount of free memory and the CPU 
utilization rate; an operation to a malfunctioning disk may lead to huge IO time and long CPU idle 
time. Hence, in order to cover a broad fault space, it is necessary to collect and store feature data 
from all the subsystems per node. Furthermore, it is beneficial to track and store the tendencies of 
these features by collecting multiple samples. For the remaining paper, the terms “data instance” 
and “observation” would be used interchangeably. To make the notation uncluttered, we use is in 
places where the absence of timestamp do not cause the ambiguity. 

Definition 2. Stream Collection. A stream collection { }1 2, ,..., nS S S S= is a collection of the 

corresponding data streams from n computing nodes.  



The input of our anomaly detection framework is a stream collection. For instance, in the 

motivating example, the input stream collection is { }, , , , ,S = ①②③④⑤⑥ . 

Definition 3. Snapshot. A snapshot is a matrix
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which captures the configuration of the stream collection S at time t and makes it easy to diagnose 
anomalies across different nodes. 

Definition 4. Snapshot Anomaly Score. Given a snapshot ( )
1 2[ ... ]t
t t ntS s s s= , its anomaly 

score is a vector ( )
1 2[ , ,..., ,..., ]t T
t t it ntQ Q Q Q Q= , where itQ  measures the amount of deviation of 

the observation its  to the center of all the observations in snapshot ( )tS . To make the notation 

uncluttered, we use iQ in places where the absence of timestamp do not cause the ambiguity. 
Snapshot Anomaly is a kind of contextual anomaly in nature. Under most of cases, an observation 
should be similar to the majority of the observations. The violation of this rule means that the 
stream may be a candidate of abnormal data streams. But, an observation of a data stream only 
reflects the transient behavior. Due to the appearance of transient fluctuation and slight phase shift, 
there is a high false-positive if we use a snapshot anomaly score only. To solve this issue, we take 
the historical information of a data stream into consideration to detect abnormal data streams. And 
we call this special type of anomaly as contextual collective anomaly.  
Definition 5. Contextual Collective Anomaly. A contextual collective stream anomaly is denoted 
as a tuple ,[ , ],i b e iS t t N< > , where iS is the i-th data stream from the collection of data streams S, 
[ , ]b et t is the associated time period when iS  is observed to constantly deviate from the majority 
streams in S, and ( , )i i iN h Q I=  indicates the severity of the anomaly, where iQ denotes the 
snapshot anomaly score of data stream iS , iI  measures the influence of the historical 
observation of data stream iS  and h  is a function reflecting the idea of integrating the 
contextual information and the historical information. 
In the motivating example, three contextual collective anomalies can be found in total. During 
time period 1 2[ , ]t t , node 1 behaves constantly different from the other nodes, so there is an 

anomaly 1 2 11,[ , ],t t N< > . The other two contextual collective anomalies, '
3 4 11,[ , ],t t N< >  and 

0 6 22,[ , ],t t N< > , can also be found with the same reason.  
Problem Definition. The anomaly detection problem in our paper can be described below: Given 

a stream collection { }1 2, ,..., mS S S S= , identify the source of the contextual collective anomalies 

iS , the associated time period [ , ]b et t , as well as an anomaly quantification. Moreover, the 
detection has to be conducted on data streams that look-back is not allowed and the anomalies 
need to be identified in real time. 



3. The System Framework 
In this paper, we focus on detecting contextual collective anomalies in homogeneous collection of 
nodes (also called “groups”), and our proposed framework is shown as Figure 4. Our anomaly 
detection is based on two key observations. First, the nodes performing comparable activities generally 
exhibit similar behaviors (Tabatabaee & Hollingsworth, 2007; Mirgorodskiy, Maruyama, & Miller, 
2006). Second, faults are rare events, so the majority of system nodes are functioning normally. For 
each group, three tightly coupled stages including the preprocessing stage, the scoring stage, and the 
alert stage, are applied to find the nodes that exhibit different behaviors from the majority. The 
functionality of the three stages is briefly described below. 
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data stream
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Figure 4  The distributed real time stream anomaly detection framework 

l The Preprocessing stage. 
On receiving the observations from external data sources, this stage is responsible for data stream 
preprocessing including common data preprocessing, snapshot acquisition, and snapshot dispatching. 
Possible common data preprocessing includes converting variable-spaced time series to 
constant-spaced ones, filling in missing samplings, generating real-value samples from system logs, 
and removing period spikes or noises. After common data preprocessing, data streams are assembled 
into snapshots. Finally, dispatchers are used to shuffle the snapshots to different downstream processing 
components. 
l The Scoring stage 
This stage quantifies the candidate anomalies using the snapshot scorer followed by the stream scorer. 
The snapshot scorer leverages contextual information to quantify the confidence of anomaly for each 
data instance at a given snapshot. Taking Figure 5 for example, it shows the data distribution by taking 
the snapshot of the 2-dimensional data instances of 500 streams at timestamp t. As shown, most of the 
data instances are close to each other and located in a dense area. These data instances are not likely to 
be identified as anomalies as their instance anomaly scores are small. On the contrary, a small portion 
of the data instances (those points that are far away from the dense region) have larger instance 
anomaly scores and are more likely to be abnormal. 



 

Figure 5 The snapshot at a certain timestamp 

A data instance with a high anomaly score does not indisputably indicate its corresponding stream to be 
a real anomaly. This is because the transient fluctuation and phase shift are common in real world 
distributed environment. To mitigate such effects, the stream scorer is designed to handle the problem. 
In particular, the stream scorer combines the information obtained from the instance scorer and the 
historical information of each stream to quantify the anomaly confidence of each stream. 
l The Alert stage. 
The alert stage contains the alter trigger. The alert triggers leverage the unsupervised learning methods 
to identify and report the outliers. The advantage of our framework is reflected by the ease of 
integration, the flexibility, and the algorithm independence. Firstly, any external data sources can be 
easily fed to the framework for anomaly detection. Moreover, the components in every stage can be 
scaled-out to increase the processing capability if necessary. The number of components in each stage 
can be easily customized according to the data scale of different real applications. Furthermore, the 
algorithms in each stage can be replaced and upgraded with better alternatives and the replacement 
would not interfere with other stages. 
To truly make the above mechanism useful in practice, we intend to provide two guarantees in the 
design of our anomaly identification system. First is the high accuracy, in terms of the low false alarm 
rate and extremely low missed rate (i.e., close to zero). Second is the time efficiency, meaning to 
quickly identify faulty nodes from the data collected, no matter how large are the data. The first 
guarantee is essential for the usefulness and effectiveness of the method, while the second guarantee is 
needed for quick detection and timely response. 

4. Methodology 
In this section, we present the details of our node anomaly detection mechanism. 

4.1 Snapshot Acquisition & Dispatching 
The goal of this step is to gather the system data for representing node behaviors, transform the data 
into a uniform format called as snapshot, and then dispatch them for data analysis.  
The dispatching sub-step is an auxiliary stage in our framework. When the data scale (i.e., the number 
of streams) is too large for a single computing component to process, the dispatcher would shuffle the 
received observations to downstream computing components in the scoring stage. By leveraging 
random shuffling algorithm like Fisher-Yates shuffle (Fisher et al., 1949), dispatching can be 
conducted in constant time per observation. After dispatching, each downstream component would 



conduct scoring independently on sampled stream observations with identical distribution. 

4.2 Snapshot Anomaly Quantification 
Quantifying the anomaly in a snapshot is the first task in the scoring stage and we leverage snapshot 
scorer in this step. This score measures the amount of deviation of the specified observation sit to the 
center of all the observations in a snapshot at timestamp t. 
A common solution to quantify the anomaly score of multi-dimension data is Local Outlier Factor 
(LOF) (Breunig et al., 2000). In principle, LOF measures the anomaly score using density-based 
clustering. This method is useful for online mining but is not suitable in our scenario due to the 
following two limitations: (1) LOF is not aware of the scale inconsistency among different dimensions. 
For dimensions with inconsistent scales, LOF would be dominated by the dimensions with large scales. 
Taking the system monitoring application for example, the CPU utilization is represented by the 
percentage of clock ticks used per second, while the memory usage is represented by the amount of 
RAM in KB, MB or GB, for which the later has a much larger scale. When using LOF, the dimension 
of memory usage would dominate the anomaly score. (2) The time of computing LOF score of 
observations increases superlinearly (O(nlogn) as the number of observations increases. This time 
complexity is acceptable for online detection but is prohibitive for real time detection. 
To address the above two limitations, we propose a simple yet efficient method to quantify the data 
instance anomaly scores. The basic idea is that the anomaly score of an observation is quantified as the 
amount of uncertainty it brings to the snapshot S(t). As the observations in a snapshot follow the normal 
distribution, it is suitable to use the increase of entropy to measure the anomaly of an observation. 
To quantify the anomaly score, two types of variance are needed: the variance and the leave-one-out 
variance, where the leave-one-out variance is the variance of the distribution when one specific data 
instance is not counted.  
Algorithm 1 Snapshot Anomaly Quantification 
1. Input: Snapshot { }( ) : |t

i it iS S s S S= ∈ , for m
its R∈ . 

2. Output: Snapshot anomaly scores nQ R∈ . 
3. create a m n× matrix 1 2[ , ,.., ]t t ntM s s s=  
4. conduct 0-1 normalization on row of M; 
5. initialize 1 2[ , ,..., ,..., ] 0mk mX x x x x= ← and ( )

1 2[ , , ] 0t n
t t ntQ Q Q Q= ← ; 

6. ( ( (1)), ( (2)), ( ( )))Tavgo S S S m← ΙΕ ΙΕ ΙΕ  
7. 1 2( , ,..., )t avg t avg nt avgM s o s o s o← − − − ; 
8. for 1k =  to m  do 

9.    2

2
th rows of kx k M=  

10. end for 
11. for all ( )t

its S∈  do 
12.    calculate itQ  according to Equation (1); 
13. end for 
14. conduct 0-1 normalization of Q; 
15. return Q  
A naive algorithm to quantify the anomaly scores requires quadratic time ( 2( )O dn dn+ ). By reusing 
the intermediate results, we propose an improved algorithm with time complexity linear to the number 
of streams. The pseudo code of the proposed algorithm is shown in Algorithm 1. As illustrated, matrix 
M is used to store the distances between each dimension of the observations to the corresponding mean. 

Making use of M, the leave-one-out variance can be quickly calculated as
2

1
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σ
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−
=

−
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denotes the variance of dimension k and ikσ  denotes the leave-one-out variance of dimension k by 

excluding its . As the entropy of normal distribution is 21 ln(2 )
2

H eπ σ= , the increase of entropy for 

observation its at dimension k can be calculated as  
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Summing up all dimensions, the snapshot anomaly score of its is
1

m

it k
k

Q d
=

=∑ .Note that the 

computation implicitly ignores the correlation between dimensions. This is because if an observation is 
an outlier, the correlation effect would only deviate it further from other observations. 

4.3 Stream Anomaly Quantification 
As a stream is continuously evolving and its observations only reflect the transient behavior, snapshot 
anomaly score alone would result in a lot of false-positives due to the transient fluctuation and slight 
phase shift. To mitigate such situations, it is critical to quantify the stream anomaly by incorporating 
the historical information of the stream.  
An intuitive way to solve this problem is to calculate the stream anomaly score from the recent 
historical instances stored in a sliding window. However, this solution has two obvious limitations: (1) 
It is hard to decide the window length. A long sliding window would miss the real anomaly while a 
short sliding window cannot rule out the false-positives. (2) It ignores the impact of observations that 
are not in the sliding window. The observation that is just popped out from the sliding window would 
immediately and totally lose its impact to the stream. 

To well balance the history and the current observation, we use stream anomaly score iN  to 
quantify how significant a stream iS  behaves differently from the majority of the streams. To 
quantify iN , we exploit the exponential decay function to control the influence depreciation. 
Supposing tΔ  is a fixed time gap between any two adjacent observations, the influence of an 

observation 
xit
s  at timestamp x k xt t k t+ = + Δ  can be expressed as ( )

x x

kt
it x k itQ t Q e λ−

+ = , where λ  is 

a parameter to control the decay speed. In the experiment evaluation, we will discuss how this 
parameter affects the anomaly detection results.  

To make the notation uncluttered, we use x it −  to denote the timestamp that is i tΔ  ahead of current 

timestamp xt , i.e. x i xt t i t− = − Δ . Summing up the influences of all the historical observations, the 

overall historical influence itI  for current timestamp t can be expressed as Equation (2). 
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  The stream anomaly score of stream iS  is the weighted summation of the data instance anomaly 

score of current observation itQ  and the overall historical influence, i.e., 

 (1 )
x x xit it itN Q Iα α= + −  (3) 

where α  denote the weight of anomaly score of current observation and in this paper we set 0.5α =  



that means we make no discrimination on the contextual information and the historical information of a 

stream. As is shown in Equation (2), the overall historical influence can be incrementally updated with 

cost (1)O  for both time and space complexity. Therefore, stream anomaly scorer can be efficiently 

computed. 

Comparing to the transient fluctuation, the real anomaly is more durable. Figure 6 shows the 

situations of a transient fluctuation (in the left subfigure) and a real anomaly (in the right subfigure). In 

both situations, the stream behaves normally before timestamp xt . For the left situation, a transient 

fluctuation occurs at timestamp 1xt + , and then the stream returns to normal at timestamp 2xt + . For the 

right situation, an anomaly begins at timestamp 1xt + , lasts for a while till timestamp x kt + , and then the 

stream returns to normal afterwards. Based on Figure 6, we show two properties about the stream 

anomaly score. The properties of stream anomaly score make our framework insensitive to the transient 

fluctuation and effective to capture the real anomaly. 

transient
 fluctuationnormal normal

tx tx+1 tx+2 time

normal abnormal normal

tx tx+1 tx+2 timetx+k  
Figure 6 Transient Fluctuation and Anomaly 

PROPERTY 1. The increase of stream anomaly score caused by transient disturbance would decrease 
over time.  
PROOF. Suppose a transient fluctuation occurs at timestamp 1xt +  in stream iS , in the worst case, 

the difference between the data instance scores of the stream iS  and a non-fluctuated stream jS  

is at most 
1 1x xupper it jtd N N m
+ +

= − ≤ , where m  is the number of dimensions. For simplicity, we 

use Euclidean distance to measure the difference between the data instance scores throughout this 
paper. 

Let 
1 11 x xit jtI Iδ
+ +

= − . Before timestamp 1xt + , no stream is abnormal, so 
1xit

I
+

 and 
1xjt

I
+

 are close 

enough and the expectation ( )1 0E δ = . At timestamp 1xt + , a transient fluctuation occurs in stream 

iS . According to Equation (3), the difference of the stream anomaly scores is  
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At timestamp 2xt + , iS  turns to be normal again, so 
2xit

Q
+

 equals to 
2xjt

Q
+

 on average. Let 

2 22 x xit jtQ Qδ
+ +

= − , we can also get ( )2 0E δ = . Accordingly, the difference between the 

corresponding stream anomaly scores at timestamp 2xt +  becomes 
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According to Equation (6), it is known that at timestamp 2xt + , the effect of fluctuation at timestamp 

1xt +  decreases.  □ 

PROPERTY 2. The increase of stream anomaly score caused by anomaly would be accumulated over 
time. 
PROOF. If a stream begins to be abnormal at timestamp 1xt + , its data instance scores would 
become larger than those of the normal streams during the abnormal period. Suppose ε  is the 

difference of the data instance scores between the abnormal stream iS  and a normal stream jS , 

at timestamp 1xt + . since both streams iS  and jS  are normal before timestamp 1xt + , we have 

1 11 x xit jtI Iδ
+ +

= −  and the expectation ( )1 0E δ = . The difference of the stream anomaly scores is 
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At timestamp 2xt + , since the stream iS  is still in the abnormal period, the difference of data 
instance scores is still larger than or equal to ε , and the difference of stream anomaly scores 
between these two streams at timestamp 2xt +  is 
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According to Equation (7), we can conclude that once a stream becomes abnormal, the difference 
between its stream anomaly score and those of the normal streams would increase over time. □ 

Similar properties can also be shown for the situation of slight shifts. A slight shift can be treated as 
two transient fluctuations occur at the beginning and the end of the shift. In the next section, we will 
leverage these two properties to effectively identify the anomalies in the ALERT STAGE. 

4.4 Alert Triggering 
Most of the stream anomaly detection solutions (Ge et al., 2010) identify the anomalies by picking 
the streams with top-k anomaly scores or the ones whose scores exceed a predefined threshold. 
However, these two approaches are not practical in real world applications for the following 
reasons: (1) Threshold is hard to set. It requires the users to understand the underlying mechanism 
of the application to correctly set the parameter. (2) The number of anomalies is changing all the 
time. It is possible that more than k anomaly streams exist at one time, then the top-k approach 
would miss these real anomalies. 
To eliminate the parameters, we propose an unsupervised method to identify and quantify the 



anomalies by leveraging the distribution of the anomaly scores. The first step is to find the median 
of the stream anomaly scores medianN . If the distance between a stream anomaly score and the 

median score is larger than the distance between the median score and the minimal score minN , the 

corresponding stream is regarded as abnormal. As shown in Figure 7, this method implicitly 
defines a dynamic threshold (shown as the dashed line) based on the hypothesis that there is no 
anomaly. If there is no anomaly, the skewness of the anomaly score distribution should be small 
and the median score should be close to the mean score. If the hypothesis is true, 

minmedianN N− should be close to half of the distance between the minimum score and the maximum 

score. On the contrary, if a score iN  is larger than min2 ( )medianN N× − , the hypothesis is violated 

and all the streams with scores at least iN  are abnormal. 

Nmin Nmedian
implicit
threhold

scores of 
abnormal 
streams

stream anomaly scores
0

Nmin Nmedian implicit
threhold

stream anomaly scores
0

 
Figure 7 Abnormal Streams Identification 

Besides the general case, we also need to handle one special case: a transient fluctuation occurs at 
the current timestamp. According to Property (1) in Section 4.3, the effect of transient fluctuation 
is at most upperd  and it will monotonically decrease. Therefore, even a stream whose anomaly 

score is larger than min2 ( )medianN N× − , it can still be a normal stream if the difference between its 

anomaly score and minN  is smaller than upperd . To prune the false-positive situations caused by 

transient fluctuation, the stream is instead identified as abnormal if  

 ( )( )min minmax 2 ,i median upperN N N N d> − +  (8) 

Another thing needs to be noted is that the stream anomaly scores have an upper bound
1
upperd
e λ−−

. 

According to the property of convergent sequence, the stream anomaly scores of all streams would 
converge to this upper bound. When the values of stream anomaly scores are close to the upper 
bound, they tend to be close to each other and hard to be distinguished. To handle this problem, 
we reset all the stream anomaly scores to 0 whenever one of them close to the upper bound. 
In terms of the time complexity, the abnormal streams can be found in ( )O n  time. Algorithm 2 

illustrates the algorithm of stream anomalies identification. The median of the scores can be found 
in ( )O n  in the worst case using the BFPRT algorithm (Blum et al., 1973). Besides finding the 

median, this algorithm also partially sorts the list by moving smaller scores before the median and 
larger scores after the median, making it trivial to identify the abnormal streams by only checking 
the streams appearing after the median. 

Algorithm 2 Stream Anomaly Identification  

1. INPUT: λ , and unordered stream profile list { }1 ,..., nS S S= . 

2. 2
nmIdx ⎡ ⎤← ⎢ ⎥⎢ ⎥

 

3. ( ),medianN BFPRT S mIdx←  

4. ( )min min . | 0iN S score i mIdx← ≤ ≤  

5. max medianN N←  



6.  for i mIdx←  to n  do 7.   if Condition (4) is satisfied then 
8.    Trigger alert for iS  with score iN  at current time. 
9.    if maxiN N>  then 
10.      max iN N=  
11.   end if 
12.  end if 
13. end for 
14. if maxN  is close to the upper bound then 
15.   Reset all stream anomaly scores. 
16. end if 
 

5. Experimental Evaluation 
We evaluate our prototype implementation on a computing cluster by manually injecting a variety of 

system faults. While experimental evaluation with real faults would be better, a major problem with 
this approach is that we do not often have the luxury of allowing systems to run for many days to see 
their behaviors. Further, it is not guaranteed that the system will experience a variety of faults during 
the experimental time. The generally accepted solution to this problem is to inject the effects of faults 
in a system and observe the behavior of the system under the injected faults (Barton et al., 1990). In our 
experiments, we are able to test the proposed anomaly detection algorithm on dozens of fault effects 
via fault injection, and show that our proposed framework can effectively and efficiently discover the 
abnormal behaviors of the computer nodes with high precision and low latency.  

5.1 Experiment Settings 
We use a Linux cluster at Nanjing University of Science & Technology (NUST) as our experiment 

platform, which consists of 76 computing nodes with 3.4GHz Intel I3 2 processors and connects each 
node via a Gigabit LAN. The cluster is running Unbtun 12.04 and Hadoop 0.20.2, and a parameter 
sweep application that is submitted on these nodes. The application solves dense linear equations by 
using Gaussian Elimination method, thereby performing comparable computation tasks. 

We randomly inject faults into the experiment platform by generating faulty threads in the back 
end—separating from the application threads, and test whether different mechanisms can effectively 
identify the faulty nodes. Three random factors are considered in our fault injection. First is to decide 
how many nodes to inject faults, second is to determine which nodes to inject faults, and the last is to 
decide the type(s) of fault(s) to inject. In our experiments, less than 10 percent of all nodes are 
randomly selected for fault injection. The inclusion of the zero cases is to test our anomaly detection 
mechanism under a fault-free environment. Totally, four typical types of faults are tested as follows: 
l Memory leaking: On randomly selected nodes, besides the normal computation threads, we introduce 

threads to generate memory leaking on the nodes, meaning that these threads continue consuming 

memory without releasing it periodically. 

l Unterminated CPU-intensive threads: On randomly selected nodes, the injected threads compete for the 

CPU resource with the normal computation threads on the nodes. 

l Frequent I/O operations: On randomly selected nodes, we introduce extra I/O intensive threads, which 

keep reading and writing a large number of bytes from local disks. 

l Network volume overflow: On randomly selected nodes, additional threads are introduced to keep 

transferring a large number of packets among them. 



The source code of injection program is available at https://github.com/yxjiang/system-noiser. We 
select these faults based on the literature and our own experience on system log analysis (Gujrati et al., 
2007;Gu et al., 2008; Park et al., 2008). For example, we have found that some job hang failures are 
triggered by deadlock, some network-related failures like packet loss are caused by heavy traffic 
volume, and some node map file failures are due to frequent IO operations. In our experiments, these 
faults are supposed to originate from the system rather than from the application. They can affect 
multiple subsystems in a node, including memory, CPU, I/O, and network, and eventually lead to 
system failure and/or performance degradation. 

To collect the health-related data across the computing cluster for troubleshooting, we leverage a 
distributed system monitoring tool (Xu & Xu, 2009) developed in our previous work to collect 14 

features from CPU, memory, I/O, and network per node at the operating system layer. These features are 
summarized in Table 1. 

TABLE 1 FEATURE LIST 

No. Features Description Category 
1 CPU_USAGE_PROC CPU utilization 

CPU 
2 CPU_CTXSWITCH No. of context switches per second 
3 USER_TIME_PROC1 process time spent in user mode 
4 SYS_TIME_PROC process time spent in system mode 
5 CPU_IO_PROC Percentage of time CPU blocked for I/O 
6 FREE_MEM Available memory (MB) 

memory 
7 SWAPPED_MEM Virtual memory (MB) 
8 PAGE_IN No. of virtual page paged in from swap per second 
9 PAGE_OUT No. of virtual page paged out to swap per second 
10 MEM_FRAGMENT No. of external memory fragmentation 
11 IO_READ No. of disk read operations per second 

IO 
12 IO_WRITE No. of disk write operations per second 
13 NIC_RXBYTE No. of received bytes by the NIC device per second 

Network 14 NIC_TXBYTE No. of transmitted bytes by the NIC device per second 

Then we deploy the proposed anomaly detection program on an external computer to analyze the 
collected trace data in real time. To well evaluate our proposed framework, we terminate all the 
irrelevant processes running on these nodes. 

5.2 Results 
We conduct two sets of experiments: 1) single-fault tests, where one type of faults are injected into 

the system and 2) multi-fault tests, where multiple types of faults are injected into the system. For each 
experiment, we conduct 10 runs and the results shown here are the averages of multiple runs. Through 
these injections, we can answer the following questions about our framework: (1) whether our 
framework can identify the anomalies with different types of root causes; (2) whether our framework 
can identify multiple anomalies occurring simultaneously. 

5.2.1 Single-fault Tests 
In the first set of experiments, we inject one type of faults onto 0-7 randomly selected nodes and 

assess whether our detection mechanism can correctly identify these abnormal nodes. The details of the 
partial injections are listed in Table 2. 

TABLE 2  LIST OF INJECTIONS 

NO.  Time Period Node Description 
1 

[100,150] 
2,23 Keep CPU utilization above 95 

2 34,48 keep number of IO operations per second above 100 



3 
[150,250] 

17 Keep memory usage at 70% 
4 55 keep number of packets transferred per second above 

15000 
5 

[300,400] 
23 Keep CPU utilization above 95 

6 69 Keep memory usage at 70% 
7 48 keep number of IO operations per second above 100 
8 

[400,450] 
17 Keep memory usage at 70% 

9 34 keep number of IO operations per second above 100 
10 

[500,550] 
48 keep number of IO operations per second above 100 

11 69 Keep memory usage at 70% 
12 

[700,800] 

17 Keep memory usage at 70% 
13 23 Keep CPU utilization above 95 
14 55 keep number of packets transferred per second above 

15000 
15 

[800,850] 
2 Keep CPU utilization above 95 

16 69 Keep memory usage at 70% 
17 34,48 keep number of IO operations per second above 100 
18 

[900,950] 
2 Keep CPU utilization above 95 

19 69 Keep memory usage at 70% 
Figure 8 illustrates the results of this experiment by plotting the actual injections (top 7 sub-figures) 

as well as the captured alerts (the bottom subplots), where the x-axis represents the time and y-axis 
represents the idled CPU utilization, idle memory usage, the number of IO operations per second, and 
the number of packets transferred per second or the number of anomalies in each timestamp. We 
evaluate the framework from three aspects through carefully-designed injections. 

 
Figure 8 Single fault injections and the captured alerts 

1. Single dimension (e.g. idle CPU utilization or idle memory usage) of a single stream behaves 
abnormally. This is the simplest type of anomalies. It is generated by injections No.5 and No.8 in 
Table 2. As shown in Figure 8, our framework effectively identifies these anomalies with the 
correct time periods. 

2. Multiple streams behave abnormally simultaneously. This type of anomalies is generated by 
injection No.5, No.6 and No.8. During the injection time period, our framework correctly 



identifies both anomalies (on node 23, node 48 and node 69). 
3. Transient fluctuation and slight delay would not cause false-positive. As this experiment is 

conducted in a distributed environment, delays exist and vary for different nodes when executing 
the injections. Despite this intervention, our framework still does not report transient fluctuations 
and slight delays as anomalies.  

Based on the evaluation results, we find that our solution is able to correctly identify all the 
anomalies in all these three different cases. 

Further, we will delve into the details about the effectiveness and efficiency of our framework. 
To quantitatively measure the performance, we use F-measure to measure the accuracy and 
detection time delay to measure the efficiency. The precision and recall in computing F-measure 
are quantified according to the ground truth shown in Table 2. To investigate how λ  affects the 
results, we conducted experiments with various λ values. 

The experimental results of how λ  affects the results accuracy is illustrated in Figure 9. To 
mitigate the randomness caused by the distributed environment, the precision, recall, and the 
F-measure are averaged with 10 runs. As shown, for the example of injecting CPU-related faults, 
as λ  increases, precision increases but recall decreases. The reason for the decreasing of recall is 
as follows: The increase of λ  causes the upper bound of stream anomaly scores to decrease and 
indirectly increases the reset frequency. After each reset of stream anomaly scores, some real 
anomalies would be skipped and they would reduce the recall. The result shows that the highest 
F-measure is 0.9351 while the lowest is 0.9032, which is stable. This is due to the changing of 
precision and recall cancels each other and makes F-measure insensitive to λ .This conclusion 
holds for other three cases. Last but not least, we also observe that detecting CPU-related faults 
has the highest accuracy, followed by IO-related faults, while detecting memory-related faults has 
the lowest accuracy, followed by network-related faults. We attribute this to the fact that 
CPU-related faults and IO-related faults can easily propagate throughout the system. 

 
Figure 9 F-measure versus reset threshold 

In terms of the time delay, our proposed framework is able to identify the anomalies in real time. 
As shown in Figure 10, the experimental results indicate that the average time delay in all the 



experiments is less than 6 seconds. We also notice that there is an obvious variance of the time 
delay due to the experiments that are conducted in a distributed system, where the environment is 
highly dynamic. Since the delay consists of network delay, injection execution delay, and the 
detection delay, the actual delay of our detection method should be less than the observed value. 

 
Figure 10 Time Delay versus reset threshold 

5.2.2 Multi-fault Tests 
In this set of experiments, different types of faults are simultaneously injected onto 0-3 nodes in 

the system. We have conducted experiments with two, three and four types of faults respectively. 
However, the results for the cases of three and four types of faults, are very similar to those for 
two-fault tests. Thus, we focus on discussion of the results for two-fault tests. The details of the 
injections are listed in Table 3. 

TABLE 3  LIST OF INJECTIONS WITH MULTIPLE TYPES OF FAULTS 

NO.  Time Period Node Description 

1 
[100,150] 

2 Keep CPU utilization above 95 and keep number of packets 
transferred per second above 15000 

2 48 keep number of IO operations per second above 100 and Keep 
memory usage at 70% 

3 
[300,400] 

23 Keep CPU utilization above 95 and keep number of IO operations 
per second above 100 

4 48 keep number of packets transferred per second above 15000 and 
Keep memory usage at 70% 

5 
[500,550] 

2 Keep CPU utilization above 95 and keep number of IO operations 
per second above 100 

6 48 keep number of IO operations per second above 100 and Keep 
memory usage at 70% 

7 
[650,750] 

2 Keep memory usage at 70% and keep number of packets transferred 
per second above 15000 

8 23 keep number of IO operations per second above 100 and keep 
number of packets transferred per second above 15000 

9 [700,800] 23 Keep CPU utilization above 95 and keep number of packets 
transferred per second above 15000 

10 [800,850] 48 Keep CPU utilization above 95 and Keep memory usage at 70% 
Similar to Figure 8, Figure 11 illustrates the results of this experiment by plotting the actual 

injections (top 11 sub-figures) as well as the captured alerts (the bottom subplots). As shown in 
Figure 8, our framework effectively identifies these anomalies with the correct time periods under 
the case of injecting multiple faults simultaneously. 



 
Figure 11 Multi-fault Injections and the captured alerts 

As λ  increases, precision increases but recall decreases. Thus, we will discuss the 
effectiveness and efficiency of our framework from the results with the worst recall for two-faults 
tests listed in the Table 4. Consistent with the conclusion that detecting CPU-related faults has the 
highest accuracy, followed by IO-related faults, while detecting memory-related faults has the 
lowest accuracy, followed by network-related faults draw from Figure 9, we can also find that 
there is a higher detection accuracy when injecting CPU-related faults or IO-related faults than the 
case of injecting memory-related faults or network-related faults. Moreover, the worst accuracy 
we got is 0.8878 in the case of injections of memory-related faults and network-related ones 
simultaneously. But this result is still better than both results, 0.7783 and 0.8764, got in the case of 
injecting single memory-related fault or single network-related fault respectively. Similarly, we 
can find that this conclusion always holds in the remaining cases, which shows that our detection 
solution can work well under complex runtime environments. In terms of the time delay, the 
experimental results indicate that the time delay in all the experiments is less than 5 seconds and 
less than the average time delay in case of injecting four single faults respectively, which shows 
that our proposed framework can also identify the anomalies in real time in case of multi-fault 
tests. 

Table 4 Results in case of multi-fault tests 

 Multiple Faults Single Fault 
Types 

of 
Faults 

CPU 
& 

Mem. 

CPU 
& 

 IO 

CPU 
& 

Net. 

Mem. 
&  
IO 

Mem.  
&  

Net. 

IO 
& 

Net. 
CPU Mem. IO Net. 

F-Score 0.9004 0.9467 0.9105 0.8999 0.8878 0.9073 0.9002 0.7783 0.8846 0.8764 



Avg. 
F-score 0.9087 0.8598 

Time 
Delay 4.2 4.2 4.2 4.3 4.3 4.3 4.3 4.7 5.3 4.4 

Avg. 
Time 
Delay 

4.25 4.675 

5.2.3 Comparison Analysis 
To demonstrate the superiority of our framework, we also conduct experiments to identify the 

anomalies with the same injection settings described in Figure 11 using the alternative methods 
including contextual anomaly detection (CAD) and rule-based continuous query (Rule-CQ). The 
contextual anomaly detection is equivalent to the snapshot scoring in our framework. For the 
rule-based continuous query, we define four rules to capture three types of anomalies, including 
high CPU utilization (rule 1), high memory usage (rule 2), high number of IO operations per 
second (rule 3) and high number of network packets per second (rule 4) respectively. Different 
combinations of these rules are used in the experiments. 

For Rule-CQ method, we experiment all the combinations: C1 (rule 1 or rule 2), C2 (rule 1 or 
rule 3), C3 (rule 1 or rule 4), C4 (rule 2 or rule 3), C5 (rule 2 or rule 4) and C6 (rule 3 or rule 3), 
and report the results. Table 5 quantitatively shows the precision, recall, and F-measure of these 
methods as well as the results of our method. The contextual anomaly detection method generates 
a lot of false alerts. This is because this method is sensitive to the transient fluctuation. Once an 
observation deviates from the others at a timestamp, an alert would be triggered. Similarly, the 
Rule-CQ method also generates many false alerts since it is difficult to use rules to cover all the 
anomaly situations. The low-precision and high-recall results of CAD and Rule-CQ indicate that 
all these method are too sensitive to fluctuations. 

Table 5 Measures of different methods performed on data streams of the distributed environment 

Measure 
Algorithm 

precision Recall F-measure 

CAD 0.4219 1.0000 0.5935 
C1:Rule 1||2 0.3382 1.0000 0.5055 
C2:Rule 1||3 0.5423 1.0000 0.7032 
C3:Rule 1||4 0.4642 1.0000 0.6340 
C4:Rule 2||3 0.3244 1.0000 0.4899 
C5:Rule 2||4 0.1878 1.0000 0.3154 
C6:Rule 3||4 0.2182 1.0000 0.3582 

Our algorithm 
 (worst case) 0.9604 0.8623 0.9087 

6. Related Works 
Leveraging machine learning and data mining techniques to facilitate the system management is 

always a hot research direction in both the communities of system and data mining (Zheng et al., 
2014; Jiang et al., 2011). In this direction, automatic anomaly detection is an increasing popular 
topic that has drawn many interests from the researchers (Chandola, Banerjee, & Kumar 2009). 
Over the recent years, continuously efforts are paid towards this topic. Generally speaking, there 
are mainly two groups of related research directions: the model-based anomaly detection and the 
data-driven anomaly detection.  



A model-based approach derives a probabilistic or analytical solution by modeling the system 
in a parameterized way. Hellerstein et al. proposed a model that is able to quantify the severity of 
anomaly in an unsupervised approach. This anomaly detection model is able to trigger the 
warnings when a deviation from the normal status learned by the model is detected (Hellerstein, 
Zhang, & Shahabuddin, 2001). Salehi et al. proposed an ensemble model based method to identify 
the anomalies in switching data streams (Salehi et al. 2014). Vaidynathan and Cross proposed an 
adaptive statistical data fitting method called MSET to enable the automatic anomaly detection 
using statistical testing (Vaidyanathan & Cross, 2003). Moreover, Hamerly and Elkan proposed a 
naive Bayesian-based model for disk failure prediction (Hamerly & Elkan, 2001) and Garg, 
Puliafito and Trivedi proposed a Semi-Markov reward model (Garg, Puliafito, & Trivedi, 1995), 
both focusing on failure detection using statistical or automation techniques. Although these 
proposed works are able to alleviate the management burden for system administrators, they ask 
the people to input model parameters, which is difficult for the people without solid mathematic or 
data mining background. Without properly setting of parameters, the model-based methods would 
have the difficulty of generating and maintaining an accurate model, especially given the 
unprecedented size and complexity of large-scale systems. 

Besides the previously mentioned related work, recently, data mining and machine learning 
have received growing attention for failure diagnosis and prognosis. These methods extract fault 
patterns from system normal behaviors and detect abnormal observations based on the learned 
knowledge without assuming a priori model ahead of time. For example, in (Sahoo et al., 
2003;Vilalta & Ma, 2002), the authors have presented several methods to predict failure events in 
IBM clusters. Fox et al. proposed an anomaly detection approach that considers both simple 
operational statistics and structural change in a complex distributed system (Fox, Kiciman, & 
Patterson, 2004). Fu and Xu (2007) have developed a framework called hPREFECTS for failure 
prediction in networked computing systems. Other representative studies include system log 
analysis (Oliner & Stearley, 2007; Schroeder & Gibson, 2006) and fault detection in syslogs 
(Stearley & Oliner, 2008).  

Different from the model-based method, our approach belongs to the data-driven category (i.e., 
making decisions by gathering and analyzing large amounts of data), it focuses more on building a 
systematic framework for real time anomaly detection over data streams from large-scale systems 
(Jiang et al. 2014).  

With the emerging requirements of mining data streams, several techniques have been proposed 
to handle the data incrementally (Jiang et al., 2013; Jiang et al., 2014; Liang et al., 2008). Pokrajac 
et al. (2007) modified the static Local Outlier Factor (LOF) method as an incremental algorithm, 
and then applied it to find data instance anomalies from the data stream. Takeuchi and Yamanishi 
(2006) trained a probabilistic model with an online discounting learning algorithm, and then use 
the training model to identify the data instance anomalies. Angiulli and Fassetti (2007) proposed a 
distance-based outlier detection algorithm to find the data instance anomalies over the data stream. 
Wu et al. (2014) proposed a data structure called RS-Forest for modeling the density anomalies 
over data streams. Pham et al (2014) proposed a residual space analysis based method to detect the 
anomalies in a large-scale data stream network. Liang et al. (2008) improved the efficiency of 
Lee’s work by only computing the distances among the sub-trajectories in the same grid. As the 
aforementioned two algorithms require accessing the entire dataset, they cannot be adapted to 
trajectory streams. To address the limitation, Bu et al. (2009) proposed a novel framework to 



detect anomalies over continuous trajectory streams. They built local clusters for trajectories and 
leveraged efficient pruning strategies as well as indexing to reduce the computational cost. 
However, their approach identified anomalies based on the local-continuity property of the 
trajectory, while our method does not make such an assumption. Our approach is close to the work 
of (Ge et al.,2010), where they proposed an incremental approach to maintain the top-K evolving 
trajectories for traffic monitoring. However, their approach mainly focused on the geospatial data 
instances and ignored the temporal correlations, while our approach explicitly considers the 
temporal information of the data instances. Moreover, all the aforementioned works focused on 
the anomaly detection of a single stream, while our work is designed to discover the contextual 
collective anomalies over multiple data streams. 

7. Conclusions 
 
Anomaly detection is always a top priority for distributed system management and it draws the 

attention of many researchers in recent years. Due to the increasing of data scale and data 
complexity, existing anomaly detection methods gradually lose their abilities. To improve the 
effectiveness and efficiency of anomaly detection and to identify new types of anomaly, in this 
paper, we propose a real time anomaly detection framework to identify the contextual collective 
anomalies from a collection of streams. Our proposed method firstly quantifies the snapshot level 
anomaly of each stream based on the contextual information. Then the contextual information and 
the historical information are used in combination to quantify the anomaly severity of each stream. 
Based on the distribution of the stream anomaly scores, an implicit threshold is dynamically 
calculated and the alerts are triggered accordingly. To demonstrate the usefulness of the proposed 
framework, several sets of experiments are conducted to demonstrate its effectiveness and 
efficiency. 

There are some future works we need to do to address the limitations of the current solution. 
The current proposed method can only be applied to the homogeneous distributed systems. In the 
real world, there are a lot of heterogeneous distributed systems that the behaviors of the nodes are 
not all the same. For example, the master node and the slave nodes would behave differently in the 
Hadoop distributed systems. In order to conduct the anomaly detection on this kind of distributed 
systems, a hybrid method that combines offline learning and online learning should be designed. 
For such a solution, the offline learning techniques would be used to learn the signatures of the 
normal behaviors of the system its history. Then the learned model would be applied to conduct 
the online learning for real time anomaly detection. Due to the highly dynamics of the distributed 
systems, this solution should be able to self-adaptive.  
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