
MovStream: An Efficient Algorithm for Monitoring Clusters Evolving in Data

Streams


Liang TANG
1
, Chang-jie TANG

1
, Lei DUAN

1
, Chuan LI

1
,

 Ye-xi JIANG
1
, Chun-qiu ZENG

1
 and Jun ZHU

2

 This work is supported by the National Natural Science Foundation of China under grant No. 60773169, the 11th

Five Years Key Programs for Sci. &Tech. Development of China under grant No. 2006BAI05A01 and the Youth

Foundation of Sichuan University No. 06036.

1School of Computer Science, Sichuan University

Chengdu, P.R.China, 610065

{tangliang, tangchangjie}@cs.scu.edu.cn

2Birth Defects Supervising Centre of Western

China Medical School, Sichuan University,

Chengdu, P.R.China, 610065

Abstract

Monitoring cluster evolution in data streams is a

major research topic in data streams mining. Previous

clustering methods for evolving data streams focus on

global clustering result. It may lose critical

information about individual cluster. This paper

introduces some basic movements of evolution of an

individual cluster. Based on the measurement of the

movements, a novel algorithm called MovStream is

proposed to monitor clusters’ evolving in data streams.

The experimental results on real datasets show that

our MovStream algorithm surpasses the well-known

CluStream algorithm by 25-50% in accuracy and one

order of magnitude in efficiency.

1. Introduction

The evolution of data clusters in data streams can be

used to analyze the trends of the continuous data

streams. Recently, several data clustering algorithms

for data streams have been introduced [2, 3, 6-12].

Most of them focus on finding the centers of clusters

and building clusters. However, in many applications,

the information about fashions of movements and

changes on clusters is also very useful. It provides a

better understanding on how and why data streams

change. CluStream is a well-known clustering

algorithm that can handle this information in evolving

data streams [4]. It proposes a new concept of

pyramidal time frames and stores the properties of

micro-clusters at particular time as snapshots.

According to subtractive properties of the micro-

cluster, it is convenient to get the clustering result in a

past time-horizon. In the applications of detecting and

monitoring data streams, the information about

appearance and disappearance of clusters may not be

enough. Discovering how a new cluster comes from

and how an old cluster changes are interesting.

This paper proposes a new method named

MovStream to monitor the data clusters in evolving

data streams over the sliding windows. Previous

clustering methods often use the global clustering

strategy to monitor the synopsis of evolving data

stream. However, each cluster has its own evolving

behavior, and the behavior contains practical meanings

in certain situation. The global uniform method may

lose some critical information. Our method provides

evolving information of each individual cluster in data

streams. The evolving behavior of each cluster is

treated as a movement of the cluster. Further, we

introduce several measurements for basic movements.

These measurements defined based on the properties

of data cluster were introduced in previous literatures

[4, 5]. We refer significant movements to movement

events. There are corresponding operations to refine

the clustering result when a movement event is detected.

These operations include move, split, merge, stretch

and delete. As the split and merge operations in B+

Tree keep the balance of the indexing tree, these

operations keep the accuracy of clustering result in

evolving data streams.

In Fig. 1, the position of the cluster center changes.

This kind of movement is defined as drift. Suppose the

data points of data streams follow a Gaussian

distribution, when the mean parameter of the Gaussian

model is changed, there should be a drift of movement

to the cluster of these data points in data streams. In

Fig. 2, two clusters are the same cluster with two time

stamps. They have the same centroid, but their

radiuses are different. The radius is defined as the

average distance from data points to the centroid that

will be introduced later. The movement comes from

different radius of the cluster will be defined as

expand or shrink. For example, if the cluster follows a

Gaussian distribution, expand or shrink can be seen as

an alteration of the variance parameter. There is also a

straightforward way to increase or decrease the radius

of the cluster.

Motivated by these observations, we propose a

heuristic strategy to detect and monitor the actions of

the clusters in evolving data streams including the

movements introduced in Fig. 1 and Fig. 2.

arrived at [t1, t2]

O1

O4

O3

O2

arrived at [t3, t4]
arrived at [t5, t6]
arrived at [t7, t8]

Fig.1 The drift to a cluster

O1

O2 O3

arrived at [t1, t2]

arrived at [t3, t4]

Fig.2 The expand to a cluster

 The main contributions of this paper are summarized

as follows. First, we propose the movement event with

the measurement to the cluster. It provides valuable

information about evolving behavior of each cluster in

evolving data streams. Second, we design a novel data

stream clustering method MovStream. It consists of the

movement event detecting algorithm and the clustering

refinement operations. The time and space

complexities of movement event detecting algorithm

are constant. Since the clustering refinement operations

are invoked only when a movement event is triggered,

the cost of these operations will be small in the

situation of stable data streams.

2. Related Work

Data streams clustering methods require the

scalability and efficiency in the data processing. Most

single pass clustering approaches are under the

assumption that the data points arrived in several

chunks [2, 3, 7, 8]. Guha et al. proposed a k-means

based algorithm for clustering data streams [3, 7]. The

algorithm only makes a single pass over the data

stream and uses small space. It requires O(kN) time

and O(N
ε
) space, where k is the number of centers, N is

the length of data stream, and ε < 1. O’Chalaghan et al

proposed the STREAM algorithm to cluster data

streams [2]. The algorithm is similar to Guha’s.

Nasraoui et al. proposed an artificial immune system

(AIS) based clustering approach TECNO-STREAMS

[9].

Aggarwal et al. proposed CluStream algorithm [4].

It adopts micro-clusters introduced in BIRCH

algorithm and uses micro-clusters to absorb arrived

data points in online step. The offline step is to use k-

means [1] to cluster the micro-clusters into macro-

clusters. The properties of micro-clusters are

subtractive, so that according to two snapshots of

micro-clusters, people can get clustering result on

every past time-horizon. However, when the purpose

of the algorithm is monitoring clusters in data streams,

previous work has two weaknesses. First, the evolving

of micro-clusters cannot represent the evolving of

individual natural clusters. Second, the natural clusters

cannot be clustered from micro-clusters in a

straightforward way. For monitoring clusters, the

macro-clustering is not executed in offline step. It

should be executed to monitor natural clusters every

period time. So it is not efficient in this situation.

3. Preliminaries

Previous literatures gave some preliminary concepts

and terminologies of the data cluster [4, 5]. Suppose |Xi

- Xj| stands for the distance between two given data

points Xi and Xj. Given a cluster C of data points {Xi},

where i = 1, 2…, N, the centroid X0, the radius R and

the diameter D of the cluster are defined as follows.

X0 =
1

() /
N

i

i

X N


 (1)

R =

1

2 2

1

1
(| 0 |)

N

i

i

X X
N 


(2)

D =

1

2 2

1 1

1
(| |)

(1)

N N

i j

i j

X X
N N  



 .

(3)

where, R is the average distance from data points to the

centroid. D is the average pairwise distance within a

cluster. They are two alternative measures of the

tightness of the cluster around the centroid. In this

paper, we use these properties to monitor the changes

in data streams.

Given two clusters Ci and Cj, let X0i and X0j be the

centroids of Ci and Cj. Then the mean distance of Ci

and Cj is defined as:

dmean (Ci , Cj) = | X0i – X0j |. (4)

In our model, each cluster has a sliding window to

maintain recent data points. The sliding window is

implemented by a dynamic-length queue. The element

of the queue contains the data point and it’s time stamp.

The sum of the lengths of queues of all clusters is fixed

by a constant parameter horizon time given by the user.

It was introduced in previous literature [4]. When a

new arrived data point is inserted to a cluster, the

oldest data point in the horizon time in one of the

clusters should be popped out.

Each data point has a time stamp. There is a

constraint for the sliding window. Suppose Xn is the

nth element in the sliding window. Two data points Xi

and Xj with time stamp Ti and Tj are in one sliding

window, if i < j, there must be Ti < Tj.

Notation. Given a sliding window SW of a cluster C

and a time stamp t, S(SW)t denotes the set of data

points X1 … Xn in SW at time stamp t, C(SW)t denotes

the cluster of S(SW)t. |SW| denotes the number of data

points in SW and the length of SW. LS(SW) denotes the

linear sum of data points in SW, and SS(SW) denotes

the square sum of data points in SW. i.e., LS(SW) =

1

n

i

i

X


 , SS(SW) =
2

1

n

i

i

X


 .

Lemma 1. Given a sliding window SW of a cluster C

with time stamp t, let X1, X2 …, XN be data points of

SW where N = |SW| > 1. The centroid, radius of cluster

C can be calculated as follow:

 X0 = () /LS SW N (5)

R = 2
1|| () / (() /) ||SS SW N LS SW N (6)

Due to space limitation, we omit proof here. The detail

can be found in [13].

 Lemma 1 gives the method to calculate the centroid

and radius according to LS and SS. When a new data

point arrives at a cluster, LS(SW) and SS(SW) of the

sliding window can be updated in a straightforward

way, whose time complexity is O(d). So the cost of

calculating the new centroid and radius of the cluster

are also O(d), where d is the number of dimensions.

4. Monitoring Clusters Evolving

As new data comes continuously, the data points in

the sliding window and the cluster are always altered.

Based on the properties of cluster introduced before,

we define measurements for movements as follows:

Definition 1 (Cluster Movement) Given a sliding

window SW of a cluster C and two time stamp t and

t’ ,t < t’, if ()tS SW  , '()tS SW  , let Rt and Rt’ be

the radiuses of C(SW)t and C(SW)t’ (Rt’ > Rt). drift,

expand, shrink from t to t’ are defined as follows:

(1) driftC (t, t’) = dmean(C(SW)t, C(SW)t’)

(2) expandC (t, t’)= Rt’ - Rt

(3) shrinkC (t, t’)= Rt - Rt’ = -expandC (t, t’)

(4) decline C (t, t’)= 1- |S(SW)t’|/ |S(SW)t|

Based on observations, only significant movements

are meaningful and worth to detect in practical

applications. We introduce some significant

movements and refer it to movement events. To control

the sensitivity of the movement event detecting, we

introduce a predefined parameter set {δi} (δi > 0)

where i = 1 … 5.

Definition 2 (Movement Event) Given a sliding

window SW of a cluster C and two stamp t and t’ (t <

t’), let the user-defined sensitivity parameter set be {δi}

(δi > 0) where i = 1 … 5, and Rt be the radius of

cluster C at time stamp t. The conditions for movement

event at time stamp t’ are defined as follows:

 Drift event: ()tS SW  , '()tS SW  , driftC (t,

t’) > Rt ∙ δ1.

 Expand event: ()tS SW  , '()tS SW  ,

expandC (t, t’) > Rt ∙ δ2.

 Shrink event: ()tS SW  , '()tS SW  , shrinkC

(t, t’) > Rt ∙ δ2.

 Die-out event: ()tS SW  , decline C (t, t’) >

δ3.(0 < δ3 < 1)

Note that, Parameters δ4 and δ5 are not used in the

definition of movement event. We will discuss them in

sub-section 5.2. In data streams, there may be more

than one movement event to trigger. The same type of

movement event except die-out event may be generated

several times to accomplish a large movement. The

type of movement event may be not exclusive either.

So that the drift event and expand event will be

generated alternately during the change.

Definition 3 (ClusterState) Given a sliding window

SW of a cluster C, the data points in SW are X1, X2 …

XN with time stamps T1, T2…, TN, the cluster state of

the cluster is a 6-tuple ClusterState = (SW, LS, SS, t,

OX0, OR) defined by:

 SW is the sliding window of the cluster.

 LS is LS(SW) of the sliding window SW.

 SS is SS(SW) of the sliding window SW.

 t is the time stamp when the last cluster

refinement operation be executed.

 OX0 is the original centroid of the cluster, which

is the centroid at time stamp t.

 OR is the original radius of the cluster, which is

the radius at time stamp t.

ClusterTable ClusterTable is a dynamic list data

structure that stores the ClusterState tuple of each

cluster in data streams. In our work, ClusterTable[i]

presents the ClusterState tuple of cluster i.

Algorithm 1 describes the first phase of our method. It

is enlighten by the idea of k-means clustering to

initialize clusters [1].

Algorithm 1 InitClusterTable (k, InitNumber)

1 Store first InitNumber data points.

2 cluster the InitNumber data points into k clusters.

3 for each initial cluster i do

4 Create the ClusterTable[i] from the cluster i.

5 Fill ClusterTable[i].SW.

6 Calculate LS, SS of ClusterTable[i].

7 Calculate centroid, radius of ClusterTable[i]

8 ClusterTable[i]. t = 0

Algorithm 2 describes how to process the new

arrived data, where Xnew is from data stream and Xlast is

the oldest data point in all clusters. The time

complexity of line 1 and 4 is less than

O(MaxNumCluster), where MaxNumCluster is a user-

defined factor that is maximal the number of clusters in

ClusterTable. Algorithm 2 is a constant time

complexity cost.

Algorithm 2 ProcessNewData (Xnew)

1 Find the nearest cluster i in ClusterTable to Xnew.

2 Add Xnew and Xnew ∙ Xnew to LS and SS of

ClusterTable[i]

3 Push Xnew in ClusterTable[i].SW

4 Find the cluster j contains Xlast in ClusterTable.

5 Pop out Xlast from ClusterTable[j].SW.

6 Subtract Xlast and Xlast ∙ Xlast from LS and SS of

ClusterTable[j]

Based on ClusterTable data structure and sensitivity

parameter set, we propose an algorithm for detecting

and refinement operations to of clusters in data streams.

The refinement operations guarantee the accuracy of

the clustering result.

Move The move operation is executed when a drift

event occurs. For example, in Fig. 1, it revises the

original centroid of the cluster to current centroid

according to LS.

Split This operation is to split the cluster into two

smaller clusters if the radius is larger than maximum

of radius. It is executed when expand event is

triggered. For example, from Fig. 3 to Fig. 4, the

cluster O1 is split into cluster O3 and O4. We use δ4 that

is one of the given sensitivity parameter set to

represent the limit of maximal radius in data streams.

Given two ClusterState tuples CSi = (SWi, LSi, SSi, ti,

OX0i, ORi,) of cluster i, if ORi > δ4 then the split

operation will be executed to the cluster i. The splitting

method consists of two O(|SW|) steps. The first is to

find out the farthest data point from the center in SW.

The second step is to make the farthest data point be a

seed to absorbing data points in SW. Some data points

which are nearer to the seed than to the center will be

assigned to the seed. Finally, the seed with its data

points becomes a new cluster. New ClusterState tuple

of the new cluster will be created and inserted to the

ClusterTable.

Merge The merge operation is to merge two near

clusters. It is executed when drift event or expand

event is triggered. For example, from Fig. 3 to Fig. 5,

the cluster O1 and cluster O2 are merged into cluster O1.

Given two ClusterState tuples CSi= (SWi, LSi, SSi, ti,

OX0i, ORi) of cluster i and CSj= (SWj, LSj, SSj, t0j, OX0j,

ORj) of cluster j, if (ORi + ORj) ∙δ5 > |OX0i – OX0j|

then the merge operation will be executed to merge

cluster i and j. The sliding windows of the two clusters

will be also merged by a merge sort. The time

complexity of merge is O(|SWi| + |SWj|).

O1

O2

Fig.3 Two

clusters

O3

O2

O4

Fig.4 After split

O1

Fig.5 After merge

Stretch The stretch operation is executed when

shrink event or expand event occurs. This operation

will update the original radius by current radius of the

cluster. Current radius can be calculated by Lemma 1.

Delete The delete operation is executed when die-

out event is triggered. This operation firstly distributes

all the data points with their time stamps of the cluster

to other cluster. Every data point will be assigned to

the nearest one of other clusters. Then it deletes the

ClusterState of the cluster in the ClusterTable.

Algorithm 3 describes maintaining the clusters and

ClusterTable. It is an event-driven process that checks

each condition of movement event and trigger

corresponding operations introduced in this subsection.

There are two integer parameters MaxNumCluster and

MinNumCluster that limit the range of the number of

clusters in data streams processing.

Algorithm 3 Maintain({δi}, MaxNumCluster,

MinNumCluster)

1 for each cluster i do

2 while exist any movement event of cluster i is

triggered do

3 event = the movement event triggered

4 Invoke corresponding operations to event

5 if the number of clusters < MinNumCluster

6 Invoke split to the maximal radius cluster.

7 if the number of clusters > MaxNumCluster

8 Invoke merge to the two closest clusters.

The time complexities of all refinement operations

are less than O(h), where h is the constant parameter

horizon time. Furthermore, the process of Algorithm 3

doesn’t need to be executed when every new data

points arrive in. The user can define a parameter

checkinterval as the number of data points in the

interval of maintaining process execution.

5. Experimental Study

All experiments were conducted on a PC with Intel

Pentium IV 3.20GHz processor and 2 GB memory,

which runs Windows XP. The well-known CluStream

[4] was used as the benchmark algorithm, and all

algorithms were implemented in standard C++.

(1) Real datasets. In order to demonstrate the

effectiveness of MovStream, the KDD-CUP’99

Network Intrusion Detection data set was used.

Aggarwal et al [4] used the data set to evaluate the

accuracy of CluStream with respect to STREAM [2].

As Aggarwal and Callaghan et al. did in [4] and [2],

the 34 continuous attributes of total 42 attributes were

selected for the experiments.

(2) Synthetic datasets. To demonstrate the scalability

of MovStream, we generated several synthetic dataset

which follows a series of Gaussian distributions. The

size of dataset varies from 100K to 400K, the number

of clusters varies from 5 to 20, and the dimensionality

of data points varies from 4 to 50. The mean and

variance of the Gaussian distributions are changed

every 10K data points. The quality of clustering on

data sets is measured by the sum of square distance

(SSQ), which is used in many previous literatures [2, 3,

4, 6 and 7]. Both algorithms were executed five times

and their average SSQs were calculated.

 We determined 5 clusters for each algorithm in real

dataset. For MovStream, the MaxNumCluster and

MinNumCluster were both set to 5 so that it can output

the same number of clusters as CluStream. For

CluStream algorithm, the parameters were set at

micro-ratio = 10, Max. Boundary Factor t = 2.

Aggarwal et al. did extensive experiments and

discussed that the clustering can achieve high-quality

and stable in that situation [4]. InitNumber for both

algorithms was set to 2000. For MovStream algorithm,

the ClusterTable maintaining process was invoked

every 100 data points, checkinterval=100. The

sensitivity parameter set was set at {1.5, 1.5, 0.95,

45500, 0.1}. Fig. 6 gives the results when horizon time

is set to 1000. At time stamp 30000, the average SSQ

of MovStream is about equal to that of CluStream.

Both algorithms output the average SSQs every 1000

data points. We have found that the average SSQs of

two algorithms are almost in a same magnitude, but

most of time MovStream is a little more accurate than

CluStream. Fig. 7 shows the results when horizon is

set to 5000 as Fig. 6. We compare the total average

SSQs for all SSQs for each horizon time in data

streams as showed in Fig. 8. MovStream is more

accurate than CluStream about 25% to 50%.

Fig.6 Network Intrusion dataset

(horizon time=1000)

Fig.7 Network Intrusion

dataset (horizon time=5000)

Fig.8 Network Intrusion dataset

total Average SSQs

Fig.9 Network Intrusion

dataset (horizon time=2000,

monitor-period=2000)

Fig.10 (B100C5 horizon

time=2000, monitor-period=2000)

Fig.11 (B400C20 horizon

time=5000, monitor-

period=5000)

Fig.12 (B100D4 horizon

time=2000, monitor-period=2000)

Fig.13 (B400D4 horizon

time=2000, monitor-

period=2000)

We also compare the efficiencies of both algorithms.

The micro-clusters in CluStream don’t represent the

natural clusters in data streams, so when the purpose is

monitoring natural clusters, CluStream needs to do

macro-clustering for each period time. The number of

data points streamed in the period time can be defined

as a parameter monitor-period. Another important

parameter for CluStream is micro-ratio, which is the

number of micro-clusters divided by the number of

natural clusters [4]. As Aggarwal et al. discussed in [4],

large amount of micro-clusters leads to high-quality

clustering result but low-performance. We compared

the efficiency of CluStream with different micro-ratio

as showed in Fig. 9. The size of load buffer of all

algorithms is set to 100000 (points), and the execution

time contains the time of data reading from hard disk.

The parameters are set as horizon time=2000, monitor-

period=2000. Other parameters are same as before.

For example, CluStream(4.0) indicates the micro-ratio

is 4.0 that the number of micro-clusters is equal to the

number of natural clusters. From Fig. 9, we can see

large amount of micro-clusters leads the performance

to fall down rapidly. Considering the same clustering

quality, CluStream(10.0) is slower about 10 times than

MovStream. From the reports from Code Performance

Profiler, we found that there are two main reasons for

MovStream algorithm is s faster than CluStream. First,

the number of clusters maintained in CluStream is

larger than that in MovStream. CluStream need a large

number of micro-clusters to achieve high-quality

clustering, the cost of find and merge the suitable

micro-clusters is high. Second, CluStream need k-

means algorithm [1] to cluster the micro-clusters into

macro-clusters in period time. The k-means algorithm

is not efficient as many single-pass data clustering

algorithms [2, 3 and 7]. Furthermore, it has to be

executed in period time.

Fig. 10 and Fig. 11 show the scalability on the

number dimensions test on synthetic datasets. Fig.12

and Fig.13 show the scalability on the number of

clusters to determine on synthetic datasets. The micro-

cluster is set as 4.0. In these synthetic dataset tests, we

can see MovStream has a better linear scalability than

CluStream, and MovStream is also faster than

CluStream. Because MovStream fits the datasets

perfectly, there is no split movement or merge

movement could be triggered in whole processes. Thus

the efficiency of MovStream is always very high.

6. Conclusions and Future Work

In this paper, we have studied: (a) introducing basic

movements of the cluster with the measurement for

them, (b) proposing an effective and efficient cluster

monitoring method named MovStream based on the

measurements, and (c) giving extensive experiments to

show that MovStream can achieve more accurate by

25-50% than that of highest clustering quality of

CluStream..MovStream includes basic movements of

cluster and operations like balance keeping operations

in B+ Tree. More valuable types of movement of the

cluster and more precise and efficient refinement

operations will be proposed in the future.

7. References

1. R. Dua and P. Hart: Pattern Classification and Scene

Analysis. J. wiley and Sons. Pages 10-45, 1973.

2. L. O’Callaghan, N. Mishra A. Meyerson and S. Guha:

Streaming-Data Algorithms for High-Quality Clustering.

In Proc. of ICDE, 2002

3. S. Guha, A. Meyerson, N. Mishra and R. Motwani.:

Clustering Data Streams: Theory and Practice. IEEE

Trans. on KDE, 15(3), pages 515-528, (2003)

4. C. C. Aggarwal, J. Han, J. Wang and P. S. Yu.: A

Framework for Clustering Evolving Data Streams. In Proc.

of the 29th VLDB, 2003

5. T. Zhang, R. Ramakrishnan, and M. Livny.: BIRCH: An

Efficient Data Clustering Method for Very Large

Databases. ACM SIGMOD Conference, 1996

6. C. Gupta and R. Grossman.: GenIc: A Single Pass

Generalized Incremental Algorithm for Clustering. In

SIAM Conference on Data Mining 2004

7. S. Guha, N. Mishra, Motwani R and Challaghan LO’:

Clustering data stream. In Proc. of the 41st annual

symposium on FOCS 2000, Redondo Beach, CA, Pages

359-366

8. M. M. Gaber, A. Zaslavsky and S. Krishnaswamy.:

Mining Data Streams: A Review. SIGMOD Record, 32(2),

pages 18-26, 2005

9. O. Nasraoui, C. Cardona, C. Rojas and F. Gonzalez.:

TECNO-STREAMS: Tracking Evolving Clusters in

Noisy Data Streams with a Scalable Immune System

Learning Model. ICDM 2003, pages 235–242

10. O. Nasraoui and C. Rojas.: Robust Clustering for

Tracking Noisy Evolving Data Streams. SDM, 2006.

11. C. Ordonez: Clustering binary data streams with k-means.

In Proceedings of the 8th ACM SIGMOD workshop on

research issues in DMKD 2003, pages 12–19.

12. F. Cao, M. Ester, W. Qian and A. Zhou: Density-Based

Clustering over an Evolving Data Stream with Noise,

SDM, 2006.

13. http://cs.scu.edu.cn/~tangliang/movstreampf.htm

