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Abstract 
 

Monitoring cluster evolution in data streams is a 

major research topic in data streams mining. Previous 

clustering methods for evolving data streams focus on 

global clustering result. It may lose critical 

information about individual cluster. This paper 

introduces some basic movements of evolution of an 

individual cluster. Based on the measurement of the 

movements, a novel algorithm called MovStream is 

proposed to monitor clusters’ evolving in data streams. 

The experimental results on real datasets show that 

our MovStream algorithm surpasses the well-known 

CluStream algorithm by 25-50% in accuracy and one 

order of magnitude in efficiency.  

 

1. Introduction 
 

The evolution of data clusters in data streams can be 

used to analyze the trends of the continuous data 

streams. Recently, several data clustering algorithms 

for data streams have been introduced [2, 3, 6-12].   

Most of them focus on finding the centers of clusters 

and building clusters. However, in many applications, 

the information about fashions of movements and 

changes on clusters is also very useful. It provides a 

better understanding on how and why data streams 

change. CluStream is a well-known clustering 

algorithm that can handle this information in evolving 

data streams [4]. It proposes a new concept of 

pyramidal time frames and stores the properties of 

micro-clusters at particular time as snapshots. 

According to subtractive properties of the micro-

cluster, it is convenient to get the clustering result in a 

past time-horizon. In the applications of detecting and 

monitoring data streams, the information about 

appearance and disappearance of clusters may not be 

enough. Discovering how a new cluster comes from 

and how an old cluster changes are interesting. 

This paper proposes a new method named 

MovStream to monitor the data clusters in evolving 

data streams over the sliding windows. Previous 

clustering methods often use the global clustering 

strategy to monitor the synopsis of evolving data 

stream. However, each cluster has its own evolving 

behavior, and the behavior contains practical meanings 

in certain situation. The global uniform method may 

lose some critical information. Our method provides 

evolving information of each individual cluster in data 

streams. The evolving behavior of each cluster is 

treated as a movement of the cluster. Further, we 

introduce several measurements for basic movements. 

These measurements defined based on the properties 

of data cluster were introduced in previous literatures 

[4, 5]. We refer significant movements to movement 

events. There are corresponding operations to refine 

the clustering result when a movement event is detected. 

These operations include move, split, merge, stretch 

and delete. As the split and merge operations in B+ 

Tree keep the balance of the indexing tree, these 

operations keep the accuracy of clustering result in 

evolving data streams.  

In Fig. 1, the position of the cluster center changes. 

This kind of movement is defined as drift. Suppose the 

data points of data streams follow a Gaussian 

distribution, when the mean parameter of the Gaussian 

model is changed, there should be a drift of movement 

to the cluster of these data points in data streams. In 



Fig. 2, two clusters are the same cluster with two time 

stamps. They have the same centroid, but their 

radiuses are different. The radius is defined as the 

average distance from data points to the centroid that 

will be introduced later. The movement comes from 

different radius of the cluster will be defined as 

expand or shrink. For example, if the cluster follows a 

Gaussian distribution, expand or shrink can be seen as 

an alteration of the variance parameter. There is also a 

straightforward way to increase or decrease the radius 

of the cluster.  

Motivated by these observations, we propose a 

heuristic strategy to detect and monitor the actions of 

the clusters in evolving data streams including the 

movements introduced in Fig. 1 and Fig. 2. 
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Fig.2 The expand to a cluster 

    The main contributions of this paper are summarized 

as follows. First, we propose the movement event with 

the measurement to the cluster. It provides valuable 

information about evolving behavior of each cluster in 

evolving data streams. Second, we design a novel data 

stream clustering method MovStream. It consists of the 

movement event detecting algorithm and the clustering 

refinement operations. The time and space 

complexities of movement event detecting algorithm 

are constant. Since the clustering refinement operations 

are invoked only when a movement event is triggered, 

the cost of these operations will be small in the 

situation of stable data streams. 

 

2. Related Work 
 

Data streams clustering methods require the 

scalability and efficiency in the data processing. Most 

single pass clustering approaches are under the 

assumption that the data points arrived in several 

chunks [2, 3, 7, 8]. Guha et al. proposed a k-means 

based algorithm for clustering data streams [3, 7]. The 

algorithm only makes a single pass over the data 

stream and uses small space. It requires O(kN) time 

and O(N
ε
) space, where k is the number of centers, N is 

the length of data stream, and ε < 1. O’Chalaghan et al 

proposed the STREAM algorithm to cluster data 

streams [2]. The algorithm is similar to Guha’s. 

Nasraoui et al. proposed an artificial immune system 

(AIS) based clustering approach TECNO-STREAMS 

[9]. 

Aggarwal et al. proposed CluStream algorithm [4]. 

It adopts micro-clusters introduced in BIRCH 

algorithm and uses micro-clusters to absorb arrived 

data points in online step. The offline step is to use k-

means [1] to cluster the micro-clusters into macro-

clusters. The properties of micro-clusters are 

subtractive, so that according to two snapshots of 

micro-clusters, people can get clustering result on 

every past time-horizon. However, when the purpose 

of the algorithm is monitoring clusters in data streams, 

previous work has two weaknesses. First, the evolving 

of micro-clusters cannot represent the evolving of 

individual natural clusters. Second, the natural clusters 

cannot be clustered from micro-clusters in a 

straightforward way. For monitoring clusters, the 

macro-clustering is not executed in offline step. It 

should be executed to monitor natural clusters every 

period time. So it is not efficient in this situation. 

 

3. Preliminaries 
 

Previous literatures gave some preliminary concepts 

and terminologies of the data cluster [4, 5]. Suppose |Xi 

- Xj| stands for the distance between two given data 

points Xi and Xj. Given a cluster C of data points {Xi}, 

where i = 1, 2…, N, the centroid X0, the radius R and 

the diameter D of the cluster are defined as follows. 
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where, R is the average distance from data points to the 

centroid. D is the average pairwise distance within a 

cluster. They are two alternative measures of the 

tightness of the cluster around the centroid. In this 

paper, we use these properties to monitor the changes 

in data streams. 

Given two clusters Ci and Cj, let X0i and X0j be the 

centroids of Ci and Cj. Then the mean distance of Ci 

and Cj is defined as: 

dmean (Ci , Cj ) = | X0i – X0j |. (4) 

In our model, each cluster has a sliding window to 

maintain recent data points. The sliding window is 

implemented by a dynamic-length queue. The element 

of the queue contains the data point and it’s time stamp. 



The sum of the lengths of queues of all clusters is fixed 

by a constant parameter horizon time given by the user. 

It was introduced in previous literature [4]. When a 

new arrived data point is inserted to a cluster, the 

oldest data point in the horizon time in one of the 

clusters should be popped out. 

Each data point has a time stamp. There is a 

constraint for the sliding window. Suppose Xn is the 

nth element in the sliding window. Two data points Xi 

and Xj with time stamp Ti and Tj are in one sliding 

window, if i < j, there must be Ti < Tj. 

 

Notation. Given a sliding window SW of a cluster C 

and a time stamp t, S(SW)t denotes the set of data 

points X1 … Xn in SW at time stamp t, C(SW)t denotes 

the cluster of S(SW)t. |SW| denotes the number of data 

points in SW and the length of SW. LS(SW) denotes the 

linear sum of data points in SW, and SS(SW) denotes 

the square sum of data points in SW. i.e.,  LS(SW) = 

1

n
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Lemma 1. Given a sliding window SW of a cluster C 

with time stamp t, let X1, X2 …,  XN be data points of 

SW where N = |SW| > 1. The centroid, radius of cluster 

C can be calculated as follow: 

 X0 = ( ) /LS SW N  (5) 

R = 2
1|| ( ) / ( ( ) / ) ||SS SW N LS SW N  (6) 

 

Due to space limitation, we omit proof here. The detail 

can be found in [13]. 

    Lemma 1 gives the method to calculate the centroid 

and radius according to LS and SS. When a new data 

point arrives at a cluster, LS(SW) and SS(SW) of the 

sliding window can be updated in a straightforward 

way, whose time complexity is O(d). So the cost of 

calculating the new centroid and radius of the cluster 

are also O(d), where d is the number of dimensions. 

 

4. Monitoring Clusters Evolving 
 

As new data comes continuously, the data points in 

the sliding window and the cluster are always altered. 

Based on the properties of cluster introduced before, 

we define measurements for movements as follows: 

Definition 1 (Cluster Movement) Given a sliding 

window SW of a cluster C and two time stamp t and 

t’ ,t < t’, if ( )tS SW  , '( )tS SW  , let Rt and Rt’ be 

the radiuses of C(SW)t and C(SW)t’ (Rt’  > Rt). drift, 

expand, shrink from t to t’ are defined as follows: 

(1)  driftC (t, t’) = dmean( C(SW)t, C(SW)t’ ) 

(2) expandC (t, t’)= Rt’  - Rt 

(3) shrinkC (t, t’)= Rt  - Rt’ = -expandC (t, t’) 

(4) decline C (t, t’)= 1- |S(SW)t’|/ |S(SW)t| 

Based on observations, only significant movements 

are meaningful and worth to detect in practical 

applications. We introduce some significant 

movements and refer it to movement events. To control 

the sensitivity of the movement event detecting, we 

introduce a predefined parameter set {δi} (δi > 0) 

where i = 1 … 5.  

Definition 2 (Movement Event) Given a sliding 

window SW of a cluster C and two stamp t and t’ (t < 

t’), let the user-defined sensitivity parameter set be {δi} 

(δi > 0) where i = 1 … 5, and Rt be the radius of 

cluster C at time stamp t. The conditions for movement 

event at time stamp t’ are defined as follows: 

 Drift event: ( )tS SW  , '( )tS SW  , driftC (t, 

t’) > Rt ∙ δ1. 

 Expand event: ( )tS SW  , '( )tS SW  , 

expandC (t, t’) > Rt ∙ δ2. 

 Shrink event: ( )tS SW  , '( )tS SW  , shrinkC 

(t, t’) > Rt ∙ δ2. 

 Die-out event: ( )tS SW  , decline C (t, t’) > 

δ3.(0 < δ3 < 1)  

Note that, Parameters δ4 and δ5  are not used in the 

definition of movement event. We will discuss them in 

sub-section 5.2. In data streams, there may be more 

than one movement event to trigger. The same type of 

movement event except die-out event may be generated 

several times to accomplish a large movement. The 

type of movement event may be not exclusive either. 

So that the drift event and expand event will be 

generated alternately during the change. 

Definition 3 (ClusterState) Given a sliding window 

SW of a cluster C, the data points in SW are X1, X2 … 

XN with time stamps T1, T2…, TN, the cluster state of 

the cluster is a 6-tuple ClusterState = (SW, LS, SS, t, 

OX0, OR) defined by: 

 SW is the sliding window of the cluster. 

 LS is LS(SW) of the sliding window SW. 

 SS is SS(SW) of the sliding window SW. 

 t is the time stamp when the last cluster 

refinement operation be executed. 

 OX0 is the original centroid of the cluster, which 

is the centroid at time stamp t. 

 OR is the original radius of the cluster, which is 

the radius at time stamp t. 

ClusterTable ClusterTable is a dynamic list data 

structure that stores the ClusterState tuple of each 

cluster in data streams. In our work, ClusterTable[i] 

presents the ClusterState tuple of cluster i. 



Algorithm 1 describes the first phase of our method. It 

is enlighten by the idea of k-means clustering to 

initialize clusters [1]. 

 
Algorithm 1 InitClusterTable (k, InitNumber) 

1 Store first InitNumber data points. 

2 cluster the InitNumber data points into k clusters. 

3 for each initial cluster i do 

4       Create the ClusterTable[i] from the cluster i.  

5       Fill ClusterTable[i].SW. 

6       Calculate LS, SS of ClusterTable[i]. 

7       Calculate centroid, radius of ClusterTable[i] 

8       ClusterTable[i]. t = 0 

 
Algorithm 2 describes how to process the new 

arrived data, where Xnew is from data stream and Xlast is 

the oldest data point in all clusters. The time 

complexity of line 1 and 4 is less than 

O(MaxNumCluster), where MaxNumCluster is a user-

defined factor that is maximal the number of clusters in 

ClusterTable. Algorithm 2 is a constant time 

complexity cost. 

 
Algorithm 2 ProcessNewData (Xnew) 

1 Find the nearest cluster i in ClusterTable to Xnew. 

2 Add Xnew and Xnew ∙ Xnew to LS and SS of 

ClusterTable[i] 

3 Push Xnew in ClusterTable[i].SW 

4 Find the cluster j contains Xlast in ClusterTable. 

5 Pop out Xlast from ClusterTable[j].SW. 

6 Subtract Xlast and Xlast ∙ Xlast from LS and SS of 

ClusterTable[j] 

 
 

Based on ClusterTable data structure and sensitivity 

parameter set, we propose an algorithm for detecting 

and refinement operations to of clusters in data streams. 

The refinement operations guarantee the accuracy of 

the clustering result. 

Move The move operation is executed when a drift 

event occurs. For example, in Fig. 1, it revises the 

original centroid of the cluster to current centroid 

according to LS.  

Split This operation is to split the cluster into two 

smaller clusters if the radius is larger than maximum 

of radius. It is executed when expand event is 

triggered. For example, from Fig. 3 to Fig. 4, the 

cluster O1 is split into cluster O3 and O4. We use δ4 that 

is one of the given sensitivity parameter set to 

represent the limit of maximal radius in data streams. 

Given two ClusterState tuples CSi = (SWi, LSi, SSi, ti, 

OX0i, ORi,) of cluster i, if ORi > δ4 then the split 

operation will be executed to the cluster i. The splitting 

method consists of two O(|SW|) steps. The first is to 

find out the farthest data point from the center in SW. 

The second step is to make the farthest data point be a 

seed to absorbing data points in SW. Some data points 

which are nearer to the seed than to the center will be 

assigned to the seed. Finally, the seed with its data 

points becomes a new cluster. New ClusterState tuple 

of the new cluster will be created and inserted to the 

ClusterTable.  

Merge The merge operation is to merge two near 

clusters. It is executed when drift event or expand 

event is triggered.  For example, from Fig. 3 to Fig. 5, 

the cluster O1 and cluster O2 are merged into cluster O1. 

Given two ClusterState tuples CSi= (SWi, LSi, SSi, ti, 

OX0i, ORi) of cluster i and CSj= (SWj, LSj, SSj, t0j, OX0j, 

ORj) of cluster j, if (ORi + ORj) ∙δ5 > |OX0i –  OX0j| 

then the merge operation will be executed to merge 

cluster i and j. The sliding windows of the two clusters 

will be also merged by a merge sort. The time 

complexity of merge is O(|SWi| + |SWj|). 
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Fig.5 After merge 

Stretch The stretch operation is executed when 

shrink event or expand event occurs. This operation 

will update the original radius by current radius of the 

cluster. Current radius can be calculated by Lemma 1. 

Delete The delete operation is executed when die-

out event is triggered. This operation firstly distributes 

all the data points with their time stamps of the cluster 

to other cluster. Every data point will be assigned to 

the nearest one of other clusters. Then it deletes the 

ClusterState of the cluster in the ClusterTable.  

Algorithm 3 describes maintaining the clusters and 

ClusterTable. It is an event-driven process that checks 

each condition of movement event and trigger 

corresponding operations introduced in this subsection. 

There are two integer parameters MaxNumCluster and 

MinNumCluster that limit the range of the number of 

clusters in data streams processing. 

 
Algorithm 3 Maintain({δi}, MaxNumCluster, 

MinNumCluster) 

1 for each cluster i  do 

2       while exist any movement event of cluster i is 

triggered do 

3             event = the movement event triggered 

4             Invoke corresponding operations to event 

5       if the number of clusters < MinNumCluster  



6             Invoke split to the maximal radius cluster.  

7       if the number of clusters > MaxNumCluster  

8             Invoke merge to the two closest clusters. 

 
The time complexities of all refinement operations 

are less than O(h), where h is the constant parameter 

horizon time. Furthermore, the process of Algorithm 3 

doesn’t need to be executed when every new data 

points arrive in. The user can define a parameter 

checkinterval as the number of data points in the 

interval of maintaining process execution. 

 

5. Experimental Study 
 

All experiments were conducted on a PC with Intel 

Pentium IV 3.20GHz processor and 2 GB memory, 

which runs Windows XP. The well-known CluStream 

[4] was used as the benchmark algorithm, and all 

algorithms were implemented in standard C++.  

(1) Real datasets. In order to demonstrate the 

effectiveness of MovStream, the KDD-CUP’99 

Network Intrusion Detection data set was used. 

Aggarwal et al [4] used the data set to evaluate the 

accuracy of CluStream with respect to STREAM [2]. 

As Aggarwal and Callaghan et al. did in [4] and [2], 

the 34 continuous attributes of total 42 attributes were 

selected for the experiments. 

(2) Synthetic datasets. To demonstrate the scalability 

of MovStream, we generated several synthetic dataset 

which follows a series of Gaussian distributions. The 

size of dataset varies from 100K to 400K, the number 

of clusters varies from 5 to 20, and the dimensionality 

of data points varies from 4 to 50. The mean and 

variance of the Gaussian distributions are changed 

every 10K data points. The quality of clustering on 

data sets is measured by the sum of square distance 

(SSQ), which is used in many previous literatures [2, 3, 

4, 6 and 7]. Both algorithms were executed five times 

and their average SSQs were calculated.  

    We determined 5 clusters for each algorithm in real 

dataset. For MovStream, the MaxNumCluster and 

MinNumCluster were both set to 5 so that it can output 

the same number of clusters as CluStream. For 

CluStream algorithm, the parameters were set at 

micro-ratio = 10, Max. Boundary Factor t = 2. 

Aggarwal et al. did extensive experiments and 

discussed that the clustering can achieve high-quality 

and stable in that situation [4]. InitNumber for both 

algorithms was set to 2000. For MovStream algorithm, 

the ClusterTable maintaining process was invoked 

every 100 data points, checkinterval=100. The 

sensitivity parameter set was set at {1.5, 1.5, 0.95, 

45500, 0.1}. Fig. 6 gives the results when horizon time 

is set to 1000. At  time stamp 30000, the average SSQ 

of MovStream is about equal to that of CluStream. 

Both algorithms output the average SSQs every 1000 

data points. We have found that the average SSQs of 

two algorithms are almost in a same magnitude, but 

most of time MovStream is a little more accurate than 

CluStream. Fig. 7 shows the results when horizon is 

set to 5000 as Fig. 6. We compare the total average 

SSQs for all SSQs for each horizon time in data 

streams as showed in Fig. 8. MovStream is more 

accurate than CluStream about 25% to 50%. 

 
Fig.6 Network Intrusion dataset 

(horizon time=1000) 
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Fig.8 Network Intrusion dataset 
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Fig.9 Network Intrusion 

dataset (horizon time=2000, 

monitor-period=2000) 

 
Fig.10 (B100C5 horizon 
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Fig.11 (B400C20 horizon 

time=5000, monitor-

period=5000) 

 
Fig.12 (B100D4 horizon 

time=2000, monitor-period=2000) 

 
Fig.13 (B400D4 horizon 

time=2000, monitor-

period=2000) 



 

We also compare the efficiencies of both algorithms. 

The micro-clusters in CluStream don’t represent the 

natural clusters in data streams, so when the purpose is 

monitoring natural clusters, CluStream needs to do 

macro-clustering for each period time. The number of 

data points streamed in the period time can be defined 

as a parameter monitor-period. Another important 

parameter for CluStream is micro-ratio, which is the 

number of micro-clusters divided by the number of 

natural clusters [4]. As Aggarwal et al. discussed in [4], 

large amount of micro-clusters leads to high-quality 

clustering result but low-performance. We compared 

the efficiency of CluStream with different micro-ratio 

as showed in Fig. 9. The size of load buffer of all 

algorithms is set to 100000 (points), and the execution 

time contains the time of data reading from hard disk. 

The parameters are set as horizon time=2000, monitor-

period=2000. Other parameters are same as before. 

For example, CluStream(4.0) indicates the micro-ratio 

is 4.0 that the number of micro-clusters is equal to the 

number of natural clusters. From Fig. 9, we can see 

large amount of micro-clusters leads the performance 

to fall down rapidly. Considering the same clustering 

quality, CluStream(10.0) is slower about 10 times than 

MovStream. From the reports from Code Performance 

Profiler, we found that there are two main reasons for 

MovStream algorithm is s faster than CluStream. First, 

the number of clusters maintained in CluStream is 

larger than that in MovStream. CluStream need a large 

number of micro-clusters to achieve high-quality 

clustering, the cost of find and merge the suitable 

micro-clusters is high. Second, CluStream need k-

means algorithm [1] to cluster the micro-clusters into 

macro-clusters in period time. The k-means algorithm 

is not efficient as many single-pass data clustering 

algorithms [2, 3 and 7]. Furthermore, it has to be 

executed in period time. 

Fig. 10 and Fig. 11 show the scalability on the 

number dimensions test on synthetic datasets. Fig.12 

and Fig.13 show the scalability on the number of 

clusters to determine on synthetic datasets. The micro-

cluster is set as 4.0. In these synthetic dataset tests, we 

can see MovStream has a better linear scalability than 

CluStream, and MovStream is also faster than 

CluStream. Because MovStream fits the datasets 

perfectly, there is no split movement or merge 

movement could be triggered in whole processes. Thus 

the efficiency of MovStream is always very high. 

 

6. Conclusions and Future Work 
 

In this paper, we have studied: (a) introducing basic 

movements of the cluster with the measurement for 

them, (b) proposing an effective and efficient cluster 

monitoring method named MovStream based on the 

measurements, and (c) giving extensive experiments to 

show that MovStream can achieve more accurate by 

25-50% than that of highest clustering quality of 

CluStream..MovStream includes basic movements of 

cluster and operations like balance keeping operations 

in B+ Tree. More valuable types of movement of the 

cluster and more precise and efficient refinement 

operations will be proposed in the future. 
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