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Abstract—The importance of mining time lags of hidden tem-
poral dependencies from sequential data is highlighted in many
domains including system management, stock market analysis,
climate monitoring, and more. Mining time lags of temporal
dependencies provides useful insights into understanding the
sequential data and predicting its evolving trend. Traditional
methods mainly utilize the predefined time window to analyze
the sequential items or employ statistic techniques to identify
the temporal dependencies from the sequential data. However,
it is a challenging task for existing methods to find time lag of
temporal dependencies in the real world, where time lags are
fluctuating, noisy, and tend to be interleaved with each other.
This paper introduces a parametric model to describe noisy time
lags. Then an efficient expectation maximization approach is
proposed to find the time lag with maximum likelihood. This
paper also contributes an approximation method for learning
time lag to improve the scalability without incurring significant
loss of accuracy. Extensive experiments on both synthetic and
real data sets are conducted to demonstrate the effectiveness and
efficiency of proposed methods.

I. INTRODUCTION

More than ever, businesses heavily rely on IT service
delivery to meet their current and frequently changing business
requirements. In their quest to maximize customer satisfac-
tion, Service Providers seek to employ business intelligent
solutions that provide deep analytical and automation capa-
bilities for optimizing problem detection, determination and
resolution[2],[19]. Detection is usually provided by system
monitoring, an automated system that provides an effective
and reliable means of ensuring that degradation of the vital
signs is flagged as a problem candidate (monitoring event) and
sent to the service delivery teams as an incident ticket. When
correlated, monitoring events, discrete in nature, could also
provide effective and reliable means for a problem determina-
tion. There has been a great deal of effort spent on developing
methodologies for event correlation and, subsequently, root
cause analysis in IT Service Management. One fruitful line
of research has involved the development of techniques for
traversing dependencies graphs of a system or application
configuration. Although these methods have been successful
for reasoning about failures, they have had limited impact
because of the overhead associated with constructing such
graphs and keeping them up-to-date. Another approach has
focused on mining temporal properties of events. The essence

of this approach is to work as far as possible with temporal
data from event management systems rather than relying on
external data.

Time lag, one of the key features in temporal dependencies,
plays an important role in discovering evolving trends of
the coming events and predicting the future behavior of
its corresponding system. For instance, a network adapter
problem typically leads to disconnecting an instant messaging
tool running on that machine after several failed retries for
communication. In this scenario, the event of network interface
down leads to a disconnect event of the instant messaging
tool after several failed re-tries with a given time lag. The
temporal dependencies among events are characterized by
the time lags. Time lags provide temporal information for
building fault-error-failure chain[3] which is useful for root
cause analysis. In addition, events triggered by a single issue
can be correlated given the appropriate time lags. Merging
those correlated events in one ticket reduces the effort of an
administrator for problem diagnosis and incident resolution.
Thus, the discovery of the time lag is a very important task
during temporal dependency mining.

The situation in real-world systems becomes complicated
due to the limitation of sequential data collecting methods
and the inherent complexity of the systems. However, events
detected by monitoring systems are typically studied with an
assumption that the time lag between correlated events is
constant and fluctuations are limited and can be ignored [18].
Although such an approach is undoubtedly applicable to a
wide range of systems, fluctuations can render the determin-
istic classical picture qualitatively incorrect, especially when
correlating events are limited. Taking the randomness of the
time lag into account makes the detection of the hidden time
lags between interleaved events a challenging task.
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Fig. 1: The temporal dependencies between A and B are
denoted as direct edges.



First, the fluctuating interleaved temporal dependencies pose
a challenging problem when attempting to discover the correct
hidden time lag between two events. For example, two events
A and B, corresponding to the events network interface
down and disconnect event of an Instant Messaging Tool,
respectively, are shown in Fig. 1. Both A and B occur with
multiple instances in the sequential data set. The ith instance
of A and the jth instance of B are associated with their
timestamp ai and bj . Because the true temporal dependencies
are interleaved with each other, it is difficult to determine
which bj is implied by a given ai. The different mapping
relationships between ai and bj lead to varying time lags. In
this example, a1 can be mapped to any bj . Therefore, the time
lag ranges from b1 − a1 to b6 − a1 time units. It is infeasible
to find the time lag with exhaustive search from large scale
sequential event data.

Second, due to the clocks out of sync and the limitations
of the data collecting method, the time lags presented in the
sequential data may oscillate with noise. In Fig. 1, a6 does
not correspond to any instance of event B for several possible
reasons: (1) its corresponding instance of B is missing from
the sequential data set; (2) the Network Adapter returns to
normality in such a short time that there is no need to eject an
instance of B since the Instant Messaging Tool successfully
continues to work after only one try; and (3) even though
the correct instance mapping relation between A and B are
provided, time lags are still observed with different values due
to recording errors brought about by system monitoring.

In summary, the above difficulties pose a big challenge for
time lag mining. To address those difficulties in this paper, we
first apply a parametric model to formulate the randomness
of time lags for temporal dependencies between events. Next,
an EM-based approach is proposed to discover the maximal
likelihood model of time lags for the temporal dependencies.
Finally, we come up with an efficient approximation method
which allows the discovery of time lags from massive events
without much loss of accuracy.

The remainder of the paper is organized as follows: In
Section 2, related work is discussed. We formulate the problem
for finding time lag with a parametric model in Section 3.
In Section 4, an EM-based solution is proposed to solve the
formulated problem. Extensive experiments are conducted in
Section 5. Section 6 provides a conclusion of our work.

II. RELATED WORK

Mining temporal dependencies among events acts an essen-
tial part in enterprise system management and the discovered
temporal dependencies have been successfully applied to tun-
ing up monitoring system configurations [12], [14].

A precursor of the temporal dependency discovery was min-
ing of frequent itemsets from the transactional data. Typical
algorithms here are GSP [16], FreeSpan [6], PrefixSpan [13],
and SPAM [4]. However, this paper focuses on discovering
the temporal dependencies from sequential data, where no
information is given to show what items belong to the same
transaction and only the time stamps of items can be utilized

as a basis for dependency instead. In this paper, items with
time stamps and events are used interchangeably.

Based on the fact that potentially related items tend to
happen within a certain time interval, some previous work
of temporal mining focuses on frequent itemsets given a pre-
defined time window [7]. However, it’s difficult to determine
a proper window size. A fixed time window fails to discover
the temporal relationship longer than the window size. Simply
setting time window size to some large number makes the
problem intractable, due to the exponential complexity of
finding frequent itemsets on the maximal number of items per
transaction.

A temporal relationship is typically represented as a pair of
items within a specific time lag. We denote it as A →[t1,t2] B.
It means that an event B will happen within time interval
[t1, t2] after an event A occurs. A lot of work was devoted to
finding such temporal dependencies characterized with time
lag [11], [9], [10], [18]. They applied statistics to judge
whether a given lag interval for two dependent items is
meaningful or it is just caused by randomness. In this paper
we consider the more realistic condition that the time lag L is
random. We extract the probability distribution of L along with
the dependent items. The lag probability distribution allows for
more insights and flexibility than just a fixed interval.

Moreover, it is a challenging task in previous work to check
a large number of possible time lags due to the complexity
of combinatorial explosion, though an optimized algorithm
is proposed with pruning techniques in [18]. In this paper,
we propose an EM-based approximation method to efficiently
learn the distribution of time lag in temporal dependency
discovery.

III. PROBLEM FORMULATION

A. Problem Description

In temporal pattern mining, the input data is a sequence
of events. Given the event space Ω of all possible events, an
event sequence S is defined as ordered finite sequence S =<
e1, e2, ..., ei, ..., ek >, where ei is an instance of an event. We
consider temporal events, i.e., each ei is a tuple ei = (Ei, ti)
of event Ei ∈ Ω and a timestamp ti of event occurrence.

Let A and B be two types of events from the event
space Ω. Focusing on a specific event A, we define SA =<
(A, a1), ..., (A, am) > to be a subsequence from S, where
only the instances of A are kept and ai is the timestamp of ith

event A. Since all the instances happening in the sequence SA

belong to the same type of event A, SA can be simply denoted
as a sequence of timestamps, i.e., SA =< a1, ..., am >.
Similarly, SB is denoted as SB =< b1, ..., bn >. Discovering
the temporal dependency between A and B is equivalent to
finding the temporal relation between SA and SB.

Specifically, if the jth instance of event B is associated with
the ith instance of event A after a time lag (µ+ϵ), it indicates

bj = ai + µ+ ϵ, (1)

where bj and ai are the timestamps of two instances of B and
A respectively, µ is the true time lag to describe the temporal



relationship between A and B, and ϵ is a random variable used
to represent the noise during data collection. Because of the
noise, the observed time lag between ai and bj is not constant.
Since µ is a constant, the lag L = µ+ ϵ is a random variable.

Definition 1: Recall from section II that the temporal de-
pendency between A and B is defined as A →L B, which
means that the occurrence of A is followed by the occurrence
of B with a time lag L. Here L is a random variable.

In order to discover the temporal dependency rule A →L B,
we need to learn the distribution of random variable L.

We assume that the distribution of L is determined by
the parameters Θ, which is independent from the occurrence
of A. The occurrence of an event B is defined by the
time lag L and the occurrence of A. Thus, the problem is
equivalent to learning the parameter Θ for the distribution of
L. The intuitive idea to solve this problem is to find maximal
likelihood parameter Θ given both sequences SA and SB . It
is expressed formally by the following Equation (2).

Θ̂ = argmax
Θ

P (Θ|SA,SB). (2)

The value of P (Θ|SA,SB) in Equation (3) is found using
the Bayes Theory.

P (Θ|SA,SB) =
P (SB|SA,Θ)× P (Θ)× P (SA)

P (SA,SB)
. (3)

Applying ln to both sides of Equation (3), we get:

lnP (Θ|SA,SB) = lnP (SB|SA,Θ) + lnP (Θ)

+ lnP (SA)− lnP (SA,SB).
(4)

In (4), only lnP (SB|SA,Θ) and lnP (Θ) are related to Θ.
We assume that a large number of small factors contribute to
distribution of L, i.e., it is uniformly distributed. As a result,
the problem is reduced to maximizing the likelihood defined
by

Θ̂ = argmax
Θ

lnP (SB|SA,Θ). (5)

Therefore, the temporal dependency A →L B can be found
by solving Equation (5).

B. Computing Log-likelihood

To solve Equation (5) we need to compute the log-likelihood
lnP (SB|SA,Θ).

We assume that timestamps bj in SB are mutually inde-
pendent given the sequence SA and value of parameters Θ if
event B is caused by A. Therefore,

P (SB|SA,Θ) =
n∏

j=1

P (bj |SA,Θ). (6)

Given the sequence of timestamps SA of event A, the
instance of event B occurring at bj is identified by possible
instances of A happening at a specific timestamp ai in the
sequence SA as shown in Fig. 2. In order to model the relation
between ai and bj , we introduce a latent variable zij defined
as follows.
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Fig. 2: The jth event B occurring at bj can be implied by any
event A. Variable zij = 1 if the jth event B is associated with
ith event A, and 0 otherwise.

zij =

{
1, the ith event A implies the jth event B;

0, otherwise.
(7)

Thus, given the sequence SA, each bj is associated with a
binary vector z•j, where each component is either 1 or 0 and
only one component of z•j is 1. For instance in Fig. 2, only the
ith component zij is 1 since ai implies bj , and the remaining
components are 0s. We apply the latent matrix Z = {zij}n×m

to denote the relation mapping between two sequences SA

and SB.
Using Z we obtain the following equations:

P (bj |z•j,SA,Θ) =

m∏
i=1

P (bj |ai,Θ)zij . (8)

P (z•j) =
m∏
i=1

P (zij = 1)zij . (9)

Combining Equations (8) and (9), we rewrite P (bj |SA,Θ)
as follows:

P (bj , z•j|SA,Θ) =
m∏
i=1

(P (bj |ai,Θ)× P (zij = 1))zij .

(10)
Furthermore, the joint probability P (bj |SA,Θ) in Equation

(10), is described by Proposition 1.
Proposition 1 (marginal probability): Given SA and Θ,

the marginal probability of bj is as follows.

P (bj |SA,Θ) =

m∑
i=1

P (zij = 1)× P (bj |ai,Θ). (11)

The proof of the Proposition is given in Appendix A-D
Based on Equation (5),(6) and (11), the log-likelihood is:

lnP (SB|SA,Θ) =
n∑

j=1

ln
m∑
i=1

P (zij = 1)× P (bj |ai,Θ).

(12)
According to Equation (12), the evaluation of log-likelihood

relies on the description of P (bj |ai,Θ). The explicit form of
P (bj |ai,Θ) expressed in terms of time lag model is presented
in the following section.

C. Modeling Time Lag

According to the discussion regarding Equation (1), the time
lag L is a random variable that is the sum of the true time
lag µ and the noise ϵ. The noise contributed to the true lag



is as a result of diverse factors, such as missing records,
incorrect values, recording delay and so forth that happen
during log collecting. In light of the Central Limit Theorem,
we assume that the noise ϵ follows the normal distribution
with zero-mean value, since we can always move the mean of
the distribution to the constant µ. Let σ2 be the variance of
the lags distribution. Then,

ϵ ∼ N (0, σ2). (13)

Since L = µ+ ϵ where µ is a constant, the distribution of
L can be expressed as

L ∼ N (µ, σ2). (14)

Parameters Θ determines the distribution of L. Based
on the model of L described in Equation (14), apparently
Θ = (µ, σ2). Thus, the discovery of time lag L is reduced
to learning the parameters µ and σ2.
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Fig. 3: A →L B, where L ∼ N (µ, σ2). An event A that
occurred at time ai is associated to an event B that occured at
bj with probability N (bj − ai|µ, σ2). Here µ is the expected
time lag of an occurrence of B after ai.

Assume that the event A is followed by the event B with a
time lag L, here L ∼ N (µ, σ2). Specifically, as shown in Fig.
3, the ith event A is associated to the jth event B where the
time lag (bj−ai) between the two events is a random variable
L distributed as N (bj − ai|µ, σ2). Thus,

P (bj |ai,Θ) = P (bj |ai, µ, σ2)

= N (bj − ai|µ, σ2).
(15)

Hence, by replacing P (bj |ai,Θ) based on Equation (15),
the log-likelihood in equation (12) is expressed as:

lnP (SB|SA,Θ) =
n∑

j=1

ln
m∑
i=1

P (zij = 1)×N(bj − ai|µ, σ2).

(16)
Here P (zij = 1) denotes the probability that the jth event B

is implied by the ith event A. Assume that there are m events
A, so we assume that

∑m
i=1 P (zij = 1) = 1. To simplify the

description, let πij = P (zij = 1).
Based on the expression of log-likelihood in Equation (16),

the Equation (5) is equivalent to the following

(µ̂, σ̂2) = argmax
µ,σ2

n∑
j=1

ln

m∑
i=1

πij ×N (bj − ai|µ, σ2).

s.t.
m∑
i=1

πij = 1

(17)

We describe algorithms to maximize the log-likelihood of
parameters µ and σ2 in the following section.

IV. ALGORITHM AND SOLUTION

A. Maximize Log-likelihood

Equation (17) is an optimization problem. Gradient ascent
method is supposed to be used to solve it. However, this
method is not applicable here since we cannot directly derive
the closed-form partial derivatives with respect to the unknown
parameters µ and σ2. The problem described by Equation (17)
is a typical mixture model. It can be solved by using iterative
expectation maximization i.e., EM-based method [5].

Given SA and Θ, by the Equation (10), the expectation of
lnP (SB,Z|SA,Θ) with respect to P (zij |SB,SA,Θ′) is as
follows:

E(lnP (SB,Z|SA,Θ)) =
n∑

j=1

m∑
i=1

E(zij |SB,SA,Θ′)× (lnπij + lnN (bj − ai|µ, σ2)).

(18)

where Θ′ is the parameter estimated on the previous iteration.
Since zij is an indicator variable, E(zij |SB,SA,Θ′) =

P (zij = 1|SB,SA,Θ′). Let rij = E(zij |SB,SA,Θ′). Then,

rij =
π′
ij ×N (bj − ai|µ′, σ′2)∑m

i π′
ij ×N (bj − ai|µ′, σ′2)

. (19)

The new parameters πij as well as µ and σ2 can be learned
by maximizing E(lnP (SB,Z|SA,Θ)).

µ =
1

n

n∑
j=1

m∑
i=1

rij(bj − ai), (20)

σ2 =
1

n

n∑
j=1

m∑
i=1

rij(bj − ai − µ)2. (21)

πij = rij . (22)

Based on Equation (22), Equation (19) is equivalent to the
following:

rij =
r′ij ×N (bj − ai|µ′, σ′2)∑m
i r′ij ×N (bj − ai|µ′, σ′2)

. (23)

To find maximum likelihood estimates of parameters, we
use EM-based algorithm lagEM (details described in Ap-
pendix A-A). The time cost of Algorithm lagEM is O(rmn),
where m and n are the number of events A and B, respec-
tively, and r is the number of iterations needed for parameters
to stabilize. As the time span of event sequence grows, more
events will be collected. Since m and n are the counts of
two types of events, it is reasonable to assume that m and n
have the same order of magnitude. Therefore, the time cost of
Algorithm lagEM is a quadratic function of events count.

Observation 1: During each iteration of Algorithm
lagEM , the probability rij describing the likelihood that the
jth event B is implied by the ith event A, becomes smaller



when the deviation of bj − ai from the estimated time lag µ
increases.

Thus, as |bj − ai − µ| becomes larger, rij approaches 0.
Further, if rij is small enough, the contribution by bj and ai
to estimate the new parameters µ and σ2 according to Equation
(20) and (21) is negligible. As a matter of fact, the time span
of the sequence of events is very long. Hence, most of rij are
small. Therefore, we can estimate new parameters µ and σ2

without significant loss of accuracy by ignoring those rij(bj−
ai) and rij(bj − ai − µ) with small rij in both Equation (20)
and (21). During each iteration of Algorithm lagEM , given
bj , we can boost Algorithm lagEM by not summing up all
the m components for parameters estimation.

Given bj , let ϵj be the sum of the probabilities rij whose
component is neglected during the iteration. That is, ϵj =∑

{i|ai is neglected} rij . Let ϵ be the largest one among all the
ϵj , i.e., ϵ = max1≤j≤n {ϵj}. Let µδ and σ2

δ be neglected parts
in the estimate µ and σ2 during each iteration. Formally, we
get,

µδ =
1

n

n∑
j=1

∑
{i|ai is neglected}

rij(bj − ai),

σ2
δ =

1

n

n∑
j=1

∑
{i|ai is neglected}

rij(bj − ai)
2.

The following lemma allows to bound the neglected part µδ

and σ2
δ .

Lemma 2: Let b̄ be the mean of all the timestamps of event
B, i.e. b̄ = 1

n

∑n
j=1 bj . Let b̄2 be the second moment of the

timestamps of event B, i.e., b̄2 = 1
n

∑n
j=1 b

2
j . Then we get:

µδ ∈ [ϵ(b̄− am), ϵ(b̄− a1)]. (24)

Let ϕ = max {b̄2 − 2b̄a1 + a21, b̄
2 − 2b̄a1 + a2m}, then

σ2
δ ∈ [0, ϵϕ]. (25)

The proof of Lemma 2 is provided in the Appendix A-D.
Lemma 2 can tell, if the ϵ is small enough, |µδ| and σ2

δ

approach 0 and the parameters µ and σ2 are more closed to
the ones without ignoring components.

Given a timestamp bj , there are m possible corresponding
timestamps of event A. Our problem is how to choose a
subset Cj of timestamps of event A to estimate the parameters
during each iteration. To guarantee that the probability of the
neglected part is less than ϵ, the probability for the subset Cj

should be greater than 1 − ϵ. In order to optimize the time
complexity, our goal is to minimize the size of Cj . It can be
solved efficiently by applying a greedy algorithm, which adds
ai to Cj with its rij in decreasing order until summation of
rij is greater than 1− ϵ.

Based on Observation 1 and the fact that all the timestamps
of event A are in increasing order, the index i for timestamps
of event A in Cj should be consecutive. Given bj , the
minimum and maximum indexes of ai in Cj can be found
by Algorithm greedyBound listed in Appendix A-B.

The time cost of greedyBound is O(logm + K) where
K = |Cj | and m is the number of events A.

Based on Lemma 2 and Algorithm greedyBound, we
propose an approximation algorithm appLagEM . The detail
of Algorithm appLagEM is given in Appendix A-C.

The total time cost of Algorithm appLagEM is
O(rn(logm+K)) where r is the number of iterations, and K
is the average size of all Cj . Typically, in the event sequence,
K << n and logm << n. Therefore, the time cost of
algorithm appLagEM is closed to a linear function of n in
each iteration.

V. EXPERIMENTS

A. Setup

The performance of proposed algorithms is evaluated by
using both synthetic and real event data. The importance of
an experiment conducted over synthetic data lies in the fact
that the ground truth can be provided in advance. To generate
synthetic data, we can fix time lag between dependent events
and add noise into synthetic data. The empirical study over
the synthetic data allows us to demonstrate the effectiveness
and efficiency of proposed algorithms.

The experiment over the real data collected from real pro-
duction environments is to show that temporal dependencies
with time lags can be discovered by running our proposed
algorithm. Detailed analysis of discovered temporal dependen-
cies allows us to demonstrate the effectiveness and usefulness
of our algorithm in practice.

All algorithms are implemented using Java 1.7. All experi-
ments are conducted on the experimental environment running
Linux 2.6.32. The computer is equipped with Intel(R) Xeon(R)
CPU with 24 cores running at speed of 2.50GHZ. The total
volume of memory is 158G.

B. Synthetic Data

1) Synthetic data generation: In this part we describe
experiments conducted on six synthetic data sets. The synthetic
data generation is defined by the parameters shown in Table
II.

TABLE II: Parameters for synthetic data generation

Name Description

βmin
Describes the minimum value for choosing the average
inter-arrival time β.

βmax
Describes the maximum value for choosing the average
inter-arrival time β.

N The number of events in the synthetic event sequence.
µmin Describes the minimum value for the true time lag µ.
µmax Describes the maximum value for the true time lag µ.

σ2
min

Describes the minimum value for the variance of time
lag.

σ2
max

Describes the maximum value for the variance of time
lag.

We employ the exponential distribution to simulate the
inter-arrival time between two adjacent events [9]. The av-
erage inter-arrival time β is randomly generated in the range
[βmin, βmax]. The true lag µ is randomly generated in the



TABLE I: The experimental result for synthetic data. The size of data ranges from 200 to 40k; µ̄ and σ̄2 are the average values
of µ and σ2; LLopt is the maximum log-likelihood. Assuming µ and σ2 follow normal distribution, µ̄ and σ̄2 are provided
with their 95% confidence interval for each algorithm over every data set. Entries with “N/A” are not available since it takes
more than 1 day to get corresponding parameters.

Ground
Truth lagEM appLagEM

ϵ = 0.001
appLagEM
ϵ = 0.05

appLagEM
ϵ = 0.1

N µ σ2 µ̄ σ̄2 LLopt µ̄ σ̄2 LLopt µ̄ σ̄2 LLopt µ̄ σ̄2 LLopt

200 77.01 44.41
77.41
[73.46,
81.36]

20.74
[18.75,
22.73]

-292.47
77.85
[73.52,
82.18]

24.68
[20.64,
28.72]

-290.99
78.21
[74.38,
82.03]

24.79
[20.62,
28.96]

-299.89
78.135
[74.16,
82.11]

25.02
[21.24,
28.80]

-300.05

1k 25.35 12.51
25.5
[25.0,
25.98]

8.66
[8.52,
8.80]

-1275.5
25.45
[25.12,
25.78]

8.62
[8.52,
8.72]

-1247.01
25.94
[24.39,
27.49]

9.296
[5.83,
12.77]

-1248.34
25.97
[24.35,
27.59]

9.36
[5.71,
13.0]

-1248.35

2k 38.54 30.88
38.68
[38.19,
39.17]

16.57
[16.38,
16.75]

-2847.0
38.81
[38.42,
39.40]

16.51
[16.45,
16.57]

-2820.6
39.78
[37.76,
41.78]

17.82
[14.17,
21.47]

-2822.60
39.32
[37.49,
41.14]

17.26
[14.36,
20.16]

-2822.57

10k 54.92 13.51
55.07
[54.60,
55.54]

8.84
[8.68,
9.0]

-12525.0
55.82
[53.97,
57.66]

10.92
[5.24,
16.60]

-12523.68
55.29
[54.23,
56.34]

9.40
[7.28,
11.52]

-12526.0
55.80
[53.99,
57.60]

10.85
[5.17,
16.53]

-12526.04

20k 59.35 17.22
59.42
[59.27,
59.57]

11.35
[11.32,
11.40]

-26554.2
59.67
[58.86,
60.50]

11.7
[10.35,
13.05]

-26332.68
59.38
[59.1,
59.70]

11.38
[11.30,
11.5]

-26332.06
59.34
[58.96,
59.72]

11.42
[11.2,
11.63]

-26336.39

40k 80.18 8.48 N/A N/A N/A
82.51
[77.76,
87.25]

5.26
[0.3,
10.3]

-40024.01
81.7

[78.15,
85.25]

4.45
[0.86,
8.04]

-40187.73
81.59
[77.9,
85.3]

4.4
[0.85,
7.94]

-40185.64

range [µmin, µmax]. And the variance of time lag σ2 is
generated between σ2

mix and σ2
max randomly.

With chosen parameters β, µ and σ2, the procedure of gen-
erating synthetic data for the temporal dependency A →µ B
is given below.

• Generate N timestamps for event A, where the inter-
arrival time between two adjacent events follows the
exponential distribution with parameter β.

• For each timestamp ai for event A, the time lag is
randomly generated according to normal distribution with
parameters µ and σ2.

• Combine all the timestamps associated with their types
to build a synthetic data set.

We set βmin = 5, βmax = 50, µmin = 25, µmax = 100,
σ2
min = 5 and σ2

max = 400 to synthesize the six data
sets with different parameters N . The numbers of events for
the synthetic data sets are 200, 1k, 2k, 10k, 20k and 40k,
respectively. Recall that the number of events only describes
the number of events of two types we are interested in. In
practice, a real data set typically gets more than hundreds of
events types in addition to the two considered types of events.
Thus 40k events of two types compare with a real data set
containing 2 million events of 100 types.

2) Synthetic data evaluation: Since the EM based approach
cannot guarantee the global optimum [5], we define a batch
as running the experiments 20 rounds with different initial
parameters chosen at random, where we empirically find out
20 rounds is reasonable for our problem. We choose the
one with the maximum likelihood among 20 rounds as the
solution of a batch. Ten such batches are conducted over
each data set. With 10 pairs of parameters µ and σ2 learnt
from 10 batches, µ̄ and σ̄2 are calculated as an average
values of µ and σ2, respectively. Furthermore, 95% confidence
intervals of µ and σ2 are provided by assuming both µ and σ2

follow the normal distribution as the prior [5]. Additionally,

LLopt denotes the maximum log-likelihood value learn by
our proposed algorithms. As shown in Table I, results of
experiments running lagEM and appLagEM are presented.

Each algorithm stops searching as it converges or the
number of iterations exceeds 500. Algorithm appLagEM
takes one more parameter ϵ as its input, where ϵ determines the
proportion of the neglected components during the parameter
estimation of each iteration. Herein, ϵ has been set to 0.001,
0.05 and 0.1. For all data sets listed in Table I, time lags
µs learnt by lagEM and appLagEM are quite close to the
ground truth. In addition, the smaller ϵ is, the more probable
that Algorithm appLagEM will get a larger log likelihood.

Further, we employ the Kullback-Leibler(KL) divergence as
the metric to measure the difference between the distribution
of time lag given by the ground truth and the discovered
results [8]. Since each algorithm with a different initial setting
of parameters runs for 10 batches over a given data set, we
take the average KL divergence of 10 batches to evaluate the
experimental result. As shown in Fig.4, the KL divergence
caused by appLagEM is almost as small as the one produced
by lagEM . Besides, as ϵ increases, the KL divergence of
appLagEM becomes larger.

Fig.5 presents the comparison of time cost over the syn-
thetic data sets. It shows that the approximation algorithm
appLagEM is much more efficient than lagEM . It also
shows that the larger the ϵ is, the less time appLagEM takes
to find the optimal distribution of the time lags. Algorithm
appLagEM even with ϵ = 0.001 is about two orders of
magnitude faster than Algorithm lagEM .

In conclusion, based on the comparative discussion of both
lagEM and appLagEM , it is possible to achieve a good
balance in terms of accuracy and efficiency.

C. Real Data

We perform the experiment over two real event data sets
collected from several IT outsourcing centers by IBM Tivoli



TABLE III: The snippet of discovered time lags
Dependency µ σ2 Signal-to-noise ratio

dataset1

TEC Error →L T icket Retry 0.34059 0.107178 1.04
AIX HW ERROR →L AIX HW ERROR 10.92 0.98 11.03
AIX HW ERROR →L NV 390MSG MV S 33.89 1.95 24.27
AIX HW ERROR →L Nvserverd Event 64.75 2.99 37.45
AIX HW ERROR →L generic postemsg 137.17 18.81 31.63
generic postemsg →L TSM SERV ER EV ENT 205.301 39.36 32.72
generic postemsg →L Sentry2 0 diskusedpct 134.51 71.61 15.90
MQ CONN NOT AUTHORIZED →L TSM SERV ER EV ENT 1167.06 142.54 97.75

dataset2 MSG Plat APP →L Linux Process 18.53 2053.46 0.408
SV C TEC HEARTBEAT →L SV C TEC HEARTBEAT 587.6 7238.5 6.90
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Fig. 4: The KL distance between the ground truth and the one
learnt by each algorithm.
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Fig. 5: Time cost comparison. ϵ of appLagEM is set with
0.001, 0.05, 0.1, 0.2, 0.4, 0.8. The size of data set ranges
from 200 to 40k.

monitoring system [1] [17]. These events are generated by the
automatic monitoring system with software agents running on
the servers of an enterprise customer, which computes metrics
for the hardware and software performance at regular intervals.
The metrics are then compared to acceptable thresholds,
known as monitoring situations, and any violation results in
an alert. If the alert persists beyond a certain delay specified
in the situation, the monitor emits an event. Therefore, a
monitoring event corresponds to one type of system alert
and one monitoring situation configured in the IBM Tivoli
monitoring system. In this experiment, discovering temporal
dependencies with time lags on monitoring events has several
practical usages:
Monitoring Redundancy Removal: Many temporal depen-
dent monitoring events are caused by correlated monitoring
situations. For example, two situations monitoring CPU uti-

lizations with similar thresholds are correlated. If the CPU
has a high utilization, the two situations will generate one
CPU event almost simultaneously. Then two CPU events are
temporally dependent. Therefore, the discovered temporal de-
pendencies can reveal the correlation of monitoring situations,
in parallel monitoring. Removing this redundancy can reduce
the running cost of monitoring agents on customer servers.
Event Correlation: Dependent monitoring events are usually
triggered by the same system issue. The event correlation
can merge dependent events into one ticket and help system
administrator diagnose the system issue.
Root Cause Determination: Some temporal dependencies
of system alerts can be seen as a fault-error-failure chain
indicating the origin of the system issue. This chain can help
the system administrator find the root cause of the related
system issue and carry out effective system diagnosis.

Each real event set is collected from one IT environment of
an enterprise customer. The number of events and types are
listed in Table IV. The dataset1 consists of a sequence of
events including 104 distinct event types, which are collected
within the time span of 32 days. There are 136 types of events
in dataset2 and 1000k events happen within 54 days. In
both data sets, hundreds of types of events result in tens of
thousands of pairs of event types. Since our algorithm takes
a pair of events as the input, it would be time-consuming to
consider all the pairs. In order to efficiently find the time lag
of most possible dependent events, we filter out the types of
events that appear less than 100 times in a corresponding data
set.

TABLE IV: Real event data set

Name # of events # of types Time span
dataset1 100k 104 32 days
dataset2 1000k 136 54 days

We employ the appLagEM with ϵ = 0.001 to mine the
time lag of temporal dependency between two events. To
increase the probability of getting the global optimal value, we
run the algorithm in a batch of 50 rounds by feeding in random
initial parameters every round. The snippet of some interesting
time lags discovered is shown as Table III. The metric signal-
to-noise ratio [15], a concept in signal processing, is used to
measure the impact of noise relative to the expected time lag.
Signal-to-noise is given as below:

SNR =
µ

σ
.

The larger the SNR, the less relative impact of noise to the
expected time lags.



TEC Error →L Ticket Retry is a temporal dependency
discovered from dataset1, where time lag L follows the
normal distribution with µ = 0.34 and the variance σ2 =
0.107178. The small expected time lag µ less than 0.1 seconds
indicates that the two events appear almost at the same time.
And the small variance shows that most of time lags between
the two event types are around the expected time lag µ. In
fact, TEC Error is caused whenever the monitoring system
fails to generate an incident ticket to the ticket system. And
Ticket Retry is raised when the monitoring system tries to
generate the ticket again.
AIX HW Error →L AIX HW Error in dataset1

describes a pattern related to the event AIX HW Error.
With the discovered µ and σ2, the event AIX HW Error
happens with an expected period about 10 seconds with small
variance less than 1 seconds. In a real production environment,
the event AIX HW Error is raised when monitoring sys-
tem polls an AIX server which is down. The failure to respond
to the monitoring system leads to an event AIX HW Error
almost every 10 seconds.

In dataset2, the expected time lag between
MSG Plat APP and Linux Process is 18.53 seconds.
However, the variance of the time lags is quite large relative
to the expected time lag with SNR = 0.4. It leads to a
weak confidence in temporal dependency between these two
events because the discovered time lags get involved in too
much noise. In practice, MSG Plat APP is a periodic
event which is the heartbeat signal sent by the applications.
However, the event Linux Process is related to the different
processes running on the Linux. So it is reasonable to assume
a weak dependency between them.

The event SV C TEC HEARTBEAT is used to record
the heartbeat signal for reporting the status of service instantly.
The temporal dependency discovered from the dataset2 shows
that SV C TEC HEARTBEAT is a periodic event with an
expected period of 10 minutes. Although the variance seems
large, the standard deviation is relatively small compared with
the expected period µ. Therefore, it still strongly indicates the
periodic temporal dependency.

The inter-arrival pattern can also be employed to find the
time lag between events such as TEC Error →[t−δ,t+δ]

Ticket Retry where t and δ is very small. However, it fails
to find the temporal pattern such as MQ CONN NOT
AUTHORIZED →L TSM SERV ER EV ENT with a
large expected time lag about of 20 minutes. The reason is
that inter-arrival pattern is discovered by only considering the
inter-arrival time lag, and the inter-arrival time lags are exactly
the small time lags.

In [18], Algorithm STScan based on the support and the
χ2 test is proposed to find the interleaved time lags between
events. Algorithm STScan can find the temporal pattern
such as AIX HW Error →[25,25] AIX HW Error and
AIX HW Error →[8,9] AIX HW Error by setting the
support threshold and the confidence level of χ2 test. In our
algorithm, we describe temporal patterns through expected
time lag and its variance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel parametric model to dis-
cover the distribution of interleaved time lags of the fluctuating
events by introducing EM-based algorithm. In order to find the
distribution of time lag for a massive events set, a near linear
approximation algorithm is proposed. Extensive experiment
conducted on both synthetic and real data show its efficiency
and effectiveness.

In the future, we will extend our model to discover temporal
patterns with more complicated distributions of time lags,
such as patterns with possibly multiple time lags existing
between two events and satisfying more complicated distri-
bution laws. Moreover, it is more challenging to discover
the dependencies among multiple events other than pairwise
dependencies. Those more realistic conditions of real world
will be considered in our future work.
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APPENDIX A
A. Algorithm lagEM

Algorithm 1 lagEM
1: procedure LagEM (SA,SB)

◃Input: two event sequences SA and SB with length m and n respectively.
◃Output: the estimated parameters µ and σ2.

2: define r′ij , µ′ and σ′2 as parameters of previous iteration
3: define rij , µ and σ2 as the parameters of current iteration

◃ initialization
4: initialize r′ij = 1

m

5: initialize µ′ and σ′2 randomly
6: while true do

◃ expectation
7: evaluate the rij following equation (23)

◃ maximization
8: update µ following equation (20)
9: update σ2 following equation (21)

◃test convergence
10: if parameters converge then
11: return µ and σ2

12: end if
13: end while
14: end procedure

In Algorithm 1, the parameters are initialized in lines 2 to 5. There are m×
n entries r′ij , the time complexity for initialization is O(mn). The optimized
parameters are evaluated by an iterative procedure in lines 6 to 14, by finding
expectation and maximizing it. The iterative procedure terminates when the
parameters converge. Let r be the total number of iterations executed. The
time cost of expectation (line 7) is O(mn) since m× n entries rij need to
be evaluated. The maximization part (lines 8 to 10) takes O(mn) to update
parameters of current iteration according to Equation (20), (21). Thus, the
time complexity of iterative procedure is O(rmn).

B. Algorithm greedyBound

In Algorithm greedyBound, line 3 employs a binary searching algorithm
to locate the nearest ai. It takes O(logm) time cost. The loop between line
6 and line 16 consumes |Cj | time units. Let K = |Cj |. Then the total time
complexity is O(logm+K).

C. Algorithm appLagEM

In appLagEM , let K be the average size of all Cj . Then the time
complexity of line 8 is O(logm+K) and it takes O(K) for line 9. Thus,
from line 6 to line 10, the complexity is O(n(logm + K)). Both line 11
and line 12 consume O(nK). Therefore, the total time cost of appLagEM
is O(rn(logm+K)) where r is the number of iterations.

D. Proofs of Propostion 1 and Lemma 2
Proof: (Proposition 1). The marginal probability is acquired by summing

up the joint probability over all the z•j, i.e.,

P (bj |SA,Θ) =
∑
z•j

m∏
i=1

(P (bj |ai,Θ)× P (zij = 1))zij .

Algorithm 2 greedyBound
1: procedure greedyBound(SA,bj ,µ, ϵ)

◃Input: SA contains all the possible timestamps of event A; bj is the timestamp
of the jth event B; µ is the mean of time lags estimated in the previous iteration;
ϵ is the probability of the timestamps of event A /∈ Cj .
◃Output: minj and maxj are the minimum and maximum indexes in Cj .

2: t = bj − µ
3: Locate the ai to which t is closed using binary search.
4: minj = i and maxj = i
5: prob = 0.0
6: while prob < 1 − ϵ do
7: if r(minj−1)j ≥ r(maxj+1)j then
8: i = minj − 1
9: minj = i

10: else
11: i = maxj + 1
12: maxj = i
13: end if
14: add ai to Cj

15: prob = prob + rij
16: end while
17: return minj and maxj .
18: end procedure

Algorithm 3 appLagEM
1: procedure appLagEM (SA,SB,ϵ)

◃Input: two event sequences SA and SB with length m and n respectively. ϵ is
the probability of the neglected part for estimating parameters.
◃Output: the estimated parameters µ and σ2.

2: define r′ij , µ′ and σ′2 as parameters of previous iteration
3: define rij , µ and σ2 as the parameters of current iteration

◃ initialization
4: initialize r′ij = 1

m

5: initialize µ′ and σ′2 randomly
6: while true do
7: for each bj do

◃find the index bound of a for each bj
8: Get minj and maxj by greedyBound

◃ expectation
9: evaluate the rij where i ∈ [minj ,maxj ]

10: end for
◃ maximization

11: update µ by equation (20) within the bound
12: update σ2 by equation (21) within the bound

◃test convergence
13: if parameters converge then
14: return µ and σ2

15: end if
16: end while
17: end procedure

Among all m components in vector z•j, there is only one component with
value 1. Without any loss of generality, let zij = 1 given z•j. Thus,

m∏
i=1

(P (bj |ai,Θ)× P (zij = 1))zij = P (bj |ai,Θ)× P (zij = 1).

Then, P (bj |SA,Θ) =
∑

z•j
P (bj |ai,Θ)× P (zij = 1) There are m

different z•j with zij = 1 where i ranges from 1 to m. Thus,

P (bj |SA,Θ) =
m∑
i=1

P (zij = 1)× P (bj |ai,Θ).

Proof: (Lemma 2) Since < a1, a2, ..., am > is a time se-
quence, we can assume that a1 ≤ a2 ≤ ... ≤ am. Thus, bj −
ai ∈ [bj − am, bj − a1]. Moreover, ϵj =

∑
i|ai is neglected rij ,

where ϵj ≤ ϵ. Therefore, 1
n

∑n
j=1 ϵ(bj − am) ≤ µδ ≤

1
n

∑n
j=1 ϵ(bj − a1). Then, we get µδ ∈ [ϵ(b̄ − am), ϵ(b̄ − a1)]. In

addition, (bj − ai)
2 ≤ max{(bj − a1)2, (bj − am)2}. Thus, σ2

δ ≤
1
n
ϵ
∑n

j=1 max{(b2j − 2bja1 + a21, b
2
j − 2bjam + a2m)}.

Then, we get σ2
δ ≤ ϵmax{b̄2−2b̄a1+a21, b̄

2−2b̄a1+a2m}. So, σ2
δ ∈ [0, ϵϕ].


