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Abstract—Large-scale time series data are prevalent across
diverse application domains including system management,
biomedical informatics, social networks, finance, etc. Temporal
dependency discovery performs an essential part to identify the
hidden interactions among the observed time series and helps to
gain more insight into the behavior of the applications. However,
the time-varying sparsity of the interactions among time series
often poses a big challenge to temporal dependency discovery
in practice. This paper formulates the temporal dependency
problem with a novel Bayesian model allowing for both the
sparsity and evolution of the hidden interactions among the
observed time series. Taking advantage of the Bayesian modeling,
an online inference method is proposed for time-varying temporal
dependency discovery. Extensive empirical studies on both the
synthetic and real application time series data are conducted to
demonstrate the effectiveness and the efficiency of the proposed
method.

I. INTRODUCTION

Large-scale multivariate time series data are prevalent across
diverse application domains including system management,
biomedical informatics, social networks, finance, etc. Tempo-
ral dependency discovery from multivariate time series has
been recognized as one of the key tasks in time series analysis.
Taking system management as an example, the time series
data (e.g., CPU utilization, memory usage) are collected by
monitoring the internal components of a large-scale distributed
information system, where a great variety of involved com-
ponents work together in a highly complex and coordinated
manner. Temporal dependency discovered from the monitoring
time series reveals important dependency relationships among
components and has established its significance in system
anomaly detection [1], root cause analysis for system fault-
s [2], etc.

Mining temporal dependency structure among time series
has been extensively studied in the past decades. The inference
of temporal dependencies can be broadly categorized into two
different frameworks: dynamic Bayesian Network [3][4] and
Granger Causality [5][6][7]. An extensive comparison study
between these two types of frameworks is presented in [8].
The Granger Causality framework is famous for its simplicity,
robustness and extendability, and becomes increasingly popu-
lar in practice [9]. Taking these advantages into account, this
paper mainly focuses on the the Granger Causality framework.

The intuitive idea of Granger Causality is that if the time
series A Granger causes the time series B, the future value
prediction of B can be improved by giving the value of A.
The prediction is typically attained by inferring the distribution
of time series. Since modeling the distribution for multivariate
time series is extremely difficult while linear regression model
is a simple and robust approach, regression model has evolved
to be one of the principal approaches for Granger Causality.
Specifically, to predict the future value of B, one regression
model built only on the past values of B should be statistically
significantly less accurate than the regression model inferred
by giving the past values of both A and B.

Based on the regression model, two major approaches have
been developed to discover the Granger Causal relationship
for multivariate time series. The first approach employs the
statistical significance test to identify the possible interactions
among time series, where the nonzero coefficients of the
regression model have been verified by hypothesis test. The
second method, named Lasso-Granger, determines the Granger
Causality from the time series by inferring the regression
model with Lasso regularization. The main idea of Lasso-
Granger is to impose a L1 regularization penalty on the
regression coefficients, so that it can effectively identify the
sparse Granger Causality especially in high dimensions. It
has been shown that both approaches are consistent in low
dimensions, while only Lasso-Granger is consistent in high
dimensions [10]. Our work is mainly based on the Lasso-
Granger approach.

Most existing works related to Lasso-Granger method have
been developed for Granger Causality inference by assuming
that the latent causal relationships for multivariate time series
are fixed yet unknown. However, this assumption rarely holds
in practice, since real-world problems often involve underlying
processes that are dynamically evolving over time. A scenario
of system management, shown in Fig. 1, is taken as an exam-
ple. In this example, multiple instances of memory intensive
applications are running on a server. At the early stage, the
memory of this server is sufficient for supporting running
application instances. However, if the number of application
instances keeps increasing and the required memory exceeds
the capacity of the server, then the server has to take advantage
of its virtual memory (the virtual memory is built on the
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disk storage) to support the running application instances. As
a result, an dynamic dependency relationship exists between
the number of running application instances and the disk I/O
(the number of bytes read from or written to the disk): at
the beginning, no obvious relationship occurs between them,
while strong relationship is indicated after the number of
running application instances increases beyond a threshold
related to the memory capacity. It turns out to be critical if the
dynamically changing behaviors of the temporal dependency
for time series can be identified instantly.

Memory Intensive

Applications

running

time

value # of running

applications

disk I/O

Fig. 1: The correlation between the number of memory inten-
sive applications and the disk I/O changes dynamically over
time in the system management.

In this paper, to capture the dynamical change of casual
relationships among the time series, we propose a time-
varying temporal dependency model based on Lasso-Granger
Casuality and develop effective online inference algorithms
using particle learning. The dynamical change behaviors of the
temporal dependency is explicitly modeled as a set of random
walk particles. The fully adaptive inference strategy of particle
learning allows our model to effectively capture the varying
dependency and learn the latent parameters simultaneously. We
conduct empirical studies on both synthetic and real dataset.
The experimental result demonstrate the effectiveness of our
proposed approach.

The remainder of this paper is organized as follows. In
Section II, most relevant existing works are briefly summa-
rized. We formulate the problem for identifying time-varying
temporal dependency in Section III. The solution based on
particle learning for online model inference is presented in
Section IV. Extensive empirical evaluation results are reported
in Section V. Finally, we conclude our work and the future
work in Section VI.

II. RELATED WORK

Temporal data are a collection of data items associated with
time stamps. In light of the different types of data items,
temporal data are divided into two categories, i.e., time series
and event data [31]. Our work focuses on time series data.

One of the major data mining tasks for time series da-
ta is to reveal the underlying temporal causal relationship
among the time series. Currently, two popular approach-
es prevail in the literature for causal relationship inference
from time series data. One is the Bayesian network infer-
ence approach [11][3][4][12], while the other approach is
the Granger Causality [5][6][7]. Comparing with Bayesian

network, Granger Causality is more straightforward, robust
and extendable. Our proposed method is more related to the
approach based on Granger Causality.

Since Granger causality is originally defined for a pair
of time series, the causal relationship identification among
multivariate time series can not be addressed directly until
the appearance of some pioneering work on combining the
notion of Granger causality with graphical model [13]. The
Granger causality inference among multivariate time series
is typically developed by two techniques, i.e., statistical
significance test and Lasso-Granger [7]. Lasso-Granger is
more preferable due to its robust performance even in high
dimensions [14][30]. Our method takes the advantage of
Lasso-Granger, but conducts the inference from the Bayesian
perspective in a sequential online mode, borrowing the idea of
Bayesian Lasso [15]. However, most of these methods assume
a constant dependency structure among time series.

In order to capture the dynamic temporal dependency
typically happening in real practice, a hidden Markov mod-
el regression [16] and time-varying dynamic Bayesian net-
work [12] have been proposed. However, the number of hidden
states in [16] and the decaying weights in [12] are difficult to
determine without any domain knowledge. Furthermore, both
methods infer the underlying dependency structure in an off-
line mode. In this paper, we explicitly model the dynamic
changes of the underlying temporal dependencies and infer
the model in an online manner.

Our proposed model makes use of sequential online infer-
ence to infer the latent state and learn unknown parameters
simultaneously. Popular sequential learning methods include
sequential monte carlo sampling [17], and particle learn-
ing [18].

Sequential Monte Carlo (SMC) methods consist of a set of
Monte Carlo methodologies to solve the filtering problem [19].
It provides a set of simulation based methods for computing
the posterior distribution. These methods allow inference of
full posterior distributions in general state space models, which
may be both nonlinear and non-Gaussian.

Particle learning provides state filtering, sequential pa-
rameter learning and smoothing in a general class of state
space models [18]. Particle learning is for approximating the
sequence of filtering and smoothing distributions in light of
parameter uncertainty for a wide class of state space models.
The central idea behind particle learning is the creation of
a particle algorithm that directly samples from the particle
approximation to the joint posterior distribution of states and
conditional sufficient statistics for fixed parameters in a fully-
adapted resample-propagate framework. We borrow the
idea of particle learning for both latent state inference and
parameter learning.

III. PROBLEM FORMULATION

In this section, we formally define the Granger Causality
problem from a Bayesian perspective first, and then model the
time-varying temporal dependency problem. Some important
notations mentioned in this paper are summarized in Table I.
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TABLE I: Important Notations

Notation Description

Y a set of time series.
K the number of time series in Y.
T the length of time series.
yi the ith time series.
yj,t the value of jth time series at time t.
y�,t a column vector containing the values of all time series at

time t.
xt a column vector built from all time series with time lag L

at time t.
Pj,t the set of particles for predicting yj,t at time t and P(i)

j,t

is the ith particle of Pj,t.
Wl the coefficient matrix for time lag l in VAR model.
wj the coefficient vector used to predict jth time series value

in Bayesian Lasso model.
wj,t the coefficient vector used to predict jth time series value

at time t in time-varying Bayesian Lasso model.
cwj the constant part of wj,t.
δwj,t the drifting part of wj,t.
ηj,t the standard Gaussian random walk at time t, given ηj,t−1.
θj the scale parameters used to compute δwj,t .

σ2
j the variance of value prediction for the jth time series.

α, β the hyper parameters determine the distribution of σ2
j .

µw the hyper parameters determine the distribution of wj in
Bayesian Lasso model.

µc the hyper parameters determine the distribution of cwj .
µθ the hyper parameters determine the distribution of θj .
γ2
p the augmented random variable for wj , with λ.

γ2
c,p the augmented random variable for cwj , with λ1.

γ2
θ,p the augmented random variable for θj , with λ2.

λ, λ1, λ2 the Lasso penalty parameters for wj , cwj and θj , respec-
tively.

A. Basic Concepts and Terminologies

Let Y be a set of time series, denoted as Y = {yi|1 ≤
i ≤ K}, where K is the number of time series in Y and yi

is the ith time series. Assume yi,t ∈ R to be the value of
the ith time series at time t, where 0 ≤ t ≤ T . The time
series yj is supposed to be caused by another time series yi

in terms of Granger Causality, denoted as yi →g yj , if and
only if the regression for yj using the past values of both yj

and yi gains statistically significant improvement in terms of
accuracy comparing with doing so with past values of yj only.
The Granger causal relationship among the set of time series
Y is formulated as a directed graph G, where each vertex of
G corresponds to a time series, and an edge exists directed
from yi to yj if yi →g yj .

In practice, the inference of Ganger causality is usually
achieved by fitting the time series data Y with a Vector
Auto-Regression (VAR) model. Let y�,t = (y1,t, ...,yK,t)

ᵀ,
a column vector containing the values of K time series at
time t. Given the maximum time lag L, the VAR model is
expressed as follows,

y�,t =
L∑

l=1

(Wl)
ᵀ
y�,t−l + ϵ, (1)

where Wl is K×K coefficient matrix for time lag l, and ϵ is
a K × 1 vector, describing the random noise. The nonzero
value of Wl

ij indicates yi →g yj . A statistics test [7] is

applied to determine the nonzero values in Wl, based on the
VAR model shown in Equation 1. However, the combinational
explosion for the statistics test on time series pairs brings about
its inefficiency for Granger causality inference, especially
analyzing time series data with high dimension.

Lasso-Granger provides a more efficient and consistent way
to infer the Granger causal relation among time series, where
L1 regularization is imposed for addressing sparsity issue
in high dimensional time series data [7]. Specifically, the
coefficient matrix Wl is obtained by minimizing the following
objective function,

min
{Wl}

T∑
t=L+1

∥ y�,t −
L∑

l=1

(Wl)
ᵀ
y�,t−l ∥22 +λ

L∑
l=1

∥Wl ∥1, (2)

where λ is the penalty parameter, which determines the
sparsity of the coefficient matrix Wl.

In Equation 2, Lasso-Granger provides regression for K
variables, where each variable is expressed as a linear function
of its own past values and past values of all other variables
with L1 regularization. To be simplified, we focus on the
regression for one arbitrarily given variable yj , and the re-
gression of other variables can be derived in a similar way.

Let xt = vec([y�,t−1,y�,t−2, ...,y�,t−L]), where vec(�) is an
operator to convert a matrix into a vector by stacking column
vectors. The Lasso regression for the variable yj is expressed
as follows,

min
wj

T∑
t=L+1

(yj,t −wᵀ
j xt)

2 + λ ∥ wj ∥1, (3)

where wj is the coefficient vector of the regression for the
variable yj . Assuming P = K ∗ L, both xt and wj are
column vectors with the dimension P×1. However, Equation 3
tends to be addressed as an optimization problem, with the
assumption that the coefficient vector is fixed but unknown.

B. Bayesian Modeling
In order to track the temporal dependencies among time

series instantly, the problem described in Equation 3 is re-
formulated from a Bayesian perspective. Bayesian method
provides a natural and principled way of combining prior
information with data, within a solid decision theoretical
framework. The past information about parameters can be in-
corporated and formed as prior knowledge for future analysis.
When new observations become available at current time t,
the previous posterior distribution of parameters at time t− 1
can be used as a prior for current parameter inference. The
parameter estimate for linear regression with Lasso penalty can
be interpreted as a Bayesian posterior mode estimate when the
priors on the regression parameters are independent Laplace
distributions [15]. The regression for yj,t is implemented by
a linear combination of xt with coefficient vector wj . From
Bayesian perspective, given the coefficient vector (i.e., wj)
and the variance of random observation noise (i.e., σ2

j ), it is
assumed that yj,t follows a Gaussian distribution as below,

yj,t|wj , σ
2
j ∼ N (wᵀ

jxt, σ
2
j ). (4)
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(b) Time-varying Bayesian Lasso model.

Fig. 2: Graphical model representations for Granger Causality. Random variable is denoted as a circle. The circle with gray
color filled means the corresponding random variable is observed. Red dot represents a hyper parameter.

In this setting, a graphical representation for Bayesian Lasso
model is illustrated in Fig. 2a, where the predicted value
yj,t depends on random variable xt, wj and σ2

j . To obtain
a Bayesian model equivalent to the Lasso regression in E-
quation 3 and simplify the computation, the conjugate prior
distributions for all the coefficients in wj are assumed as the
independent Laplace distributions. Therefore,

π(wj |σ2
j ) =

P∏
p=1

λ

2
√
σ2

e−λ|wj,p|/
√

σ2
, (5)

where π(�) denotes the probability density function. The distri-
bution in Equation 5 can be equivalently expressed as a scale
mixture of normals with an exponential mixing density. The
augmented latent variables γ2

1 , ..., γ
2
P , following independent

exponential distributions, are introduced to build the mixture
of normals. The full Bayesian Lasso model is developed in
the following hierarchical representation.

wj |σ2
j , γ

2
1 , ..., γ

2
P ∼ N (µw, σ2

jRwj),

σ2
j ∼ IG(α, β),

γ2
p ∼ Exp(λ2/2), 1 ≤ p ≤ P,

(6)

where Rwj
= diag(γ2

1 , ..., γ
2
P ). The prior of σ2

j follows In-
verse Gamma (abbr., IG) distribution with hyper parameters α
and β. The prior of γ2

p is given by the exponential distribution
(denoted as Exp) with the hyper parameter λ2/2, where λ
is the Lasso regularization parameter defined in Equation 3.
Given σ2

j and γ2
1 , ..., γ

2
P , the prior of the coefficient vector wj

follows a Gaussian distribution with µw and σ2
jRwj

as the
mean and the variance, respectively. Typically, µw is set to be
0.

The full hierarchical representation in Equation 6 can be
reduced to the joint distribution of independent Laplace priors
in Equation 5 after integrating out all the augmented latent
variables γ2

1 , ..., γ
2
P . With the help of the Bayesian Lasso

model, the temporal dependency in terms of Granger Causality
can be determined by inferring the posterior distribution of wj

instantly.

C. Dynamic Causal Relationship Modeling

In real practice, the underlying causal relationship among
time series tends to evolve over time. As illustrated in Fig. 3,
From the time t − 1 to t, the dynamic changes of the

causal relationship among time series consist of three types:
new dependency occurring, dependency fading away, and the
strength of dependency varying.

y1,t-L ... y1,t-2 y1,t-1 y1,t

y2,t-L ... y2,t-2 y2,t-1 y2,t

yK,t-L ... yK,t-2 yK,t-1 yK,t

.
.
.

.
.
.

.
.
.

.
.
.

y1,t-1-L

y2,t-1-L

yK,t-1-L

.
.
.

WL
11,[t-1]

W1
11,[t]

W2
21,[t]

WL
2k,[t-1]

G[t]G[t-1]

WL
2k,[t-1]

W1
11,[t-1]

Fig. 3: L is the maximum time lag for VAR model. Temporal
dependency among time series changes from G[t− 1] at time
t− 1 to G[t] at time t. The nonzero coefficients are indicated
by the directed edges. Red lines is used to denote the temporal
dependencies in G[t− 1], while the green lines represent the
temporal dependencies in G[t]. The thicker lines mean stronger
dependencies existing.

As shown in Equation 3, the value prediction for yj at
time t is conducted by a linear combination of its own past
values and the past values of other variables, using coefficient
vector wj with L1 regularization penalty. Each element in
the coefficient vector wj indicates the contribution of the past
value of the corresponding variable for predicting yj,t. The
aforementioned model is based on the assumption that wj

is unknown but fixed, which does not work well with the
scenario where the temporal dependency dynamically changes
over time. To account for the dynamics, our goal is to come up
with a model having the capability of capturing the drift of wj

over time so as to track the time-varying temporal dependency
among the time series instantly. Let wj,t denote the coefficient
vector for predicting yj,t at time t. Taking the drift of wj into
account, wj,t is formulated as follows:

wj,t = cwj + δwj,t , (7)

where wj,t is decomposed into two components including
both the stationary component cwj and the drift component
δwj,t . Both components are P -dimensional vectors. Similar to
modeling wj in Fig.2a, a conjugate prior distribution below is
assumed to generate the stationary component cwj .

cwj ∼ N (µc, σ
2
jRcj), (8)
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where µc is the hyper parameter, and Rcj
=

diag(γ2
c,1, ..., γ

2
c,P ). The latent variables γ2

c,1, ..., γ
2
c,P

follow independent exponential distributions ruled by the
hyper parameter λ2

1/2, as shown in Fig.2b.
However, it’s not straightforward to model the drift com-

ponent with a single function due to the diverse changing be-
haviors of the regression coefficients. First, some coefficients
change frequently, while some coefficients keep relatively
stable. Moreover, the coefficients for different variables can
change with diverse scales. To simplify the inference, we
assume that each element of δwj,t drifts independently. Due to
the uncertainty of drifting, we formulate δwj,t by combining
a standard Gaussian random walk ηj,t and a scale variable θj
using the following Equation:

δwj,t = θj ⊙ ηj,t, (9)

where ηj,t ∈ RP is the drift value at time t caused by the
standard random walk and θj ∈ RP contains the changing
scales for all the elements of δwj,t . The operator ⊙ is used
to denote the element-wise product. The standard Gaussian
random walk is defined with a Markov process as shown in
Equation 10.

ηj,t = ηj,t−1 + v, (10)

where v is a standard Gaussian random variable defined by
v ∼ N (0, IP ), and IP is a P × P -dimensional identity
matrix. It is equivalent that ηj,t is sampled from the Gaussian
distribution

ηj,t ∼ N (ηj,t−1, IP ). (11)

Similarly, the scale random variable θj is generated with a
conjugate prior distribution

θj ∼ N (µθ, σ
2
jRθj), (12)

where µθ is predefined hyper parameter, and Rθj =
diag(γ2

θ,1, ..., γ
2
θ,P ). The latent variables γ2

θ,1, ..., γ
2
θ,P , follow-

ing the independent exponential distributions governed by the
hyper parameter λ2

2/2, are used to construct Rθj . The random
variable σ2

j of the time-varying Bayesian Lasso model in
Fig. 2b is drawn from the Inverse Gamma distribution, which
is the same as the one described in Equation 6.

Combining Equation 7 and Equation 9, we obtain:

wj,t = cwj + θj ⊙ ηj,t, (13)

Accordingly, the value xt
j is modeled to be drawn from the

following a Gaussian distribution as below,

yj,t|cwj , θj , ηj,t, σ
2
j ∼ N ((cwj + θj ⊙ ηj,t)

ᵀxt, σ
2
j ). (14)

The time-varying Bayesian Lasso model is presented with a
graphical model representation in Fig. 2b. Compared with the
model in Fig. 2a, a standard Gaussian random walk ηj,t and
the corresponding scale θj for jth time series are introduced
in the new model. The new model explicitly formulates the
coefficients in Lasso regression, considering the time-varying
temporal dependency in real-world application. From the new
model, each element value of cwj indicates the contribution
of the past values of each variable in predicting the value yj,t,

while the element values of θj show the drift scales of their
contributions to the prediction of yj,t. A large element value
of θj signifies a great change occurring to the strength of the
corresponding causal relationship over time.

Lemma 1 (Equivalent Optimization). The time-varying
Bayesian Lasso model is equivalent to the optimization prob-
lem as follows:

min
{wj,t}

T∑
t=L+1

(yj,t − (cwj + θj ⊙ ηj,t)
ᵀxt)

2+

λ1 ∥ cwj ∥1 +λ2 ∥ θj ∥1,

(15)

where λ1 and λ2 are penalty parameters, determining the
sparsity of both stationary component and drift component.

Based on the idea of Bayesian Lasso, Lemma 1 is straight-
forward. Thus, its proof is not provided.

According to Lemma 1, λ1 is set to determine the sparsity of
stationary component and λ2 is used for controlling the vari-
ance of drift component. It is difficult to infer the coefficient
vectors {wj,t} instantly directly from Equation 15, since ηj,t is
the latent variables. We develop our solution to infer the time-
varying Bayesian Lasso model from a Bayesian perspective
and the solution is presented in the following section.

IV. METHODOLOGY AND SOLUTION

In this section, we present the methodology for online
inference of the time-varying Bayesian Lasso model.

The posterior distribution inference involves the latent ran-
dom variables σ2

j , cwj
, θj , Rcj , Rθj , and ηj,t. According to

the graphical model in Fig. 2b, all the latent random variables
are grouped into three categories: parameter random variable,
augmented random variable and latent state random variable.
σ2
j , cwj , θj , are parameter random variables since they are

assumed to be fixed and unknown, and their values do not
depend on the time. Rcj , Rθj are regarded as augmented
random variables where these variables are introduced for
equivalent Lasso derivation but their specific values are not
very interesting for the problem. Instead, ηj,t is referred to as
a latent state random variable since it is not observable and
its value is time dependent according to Equation 10. On the
other hand, xt and yj,t are referred to as observed random
variables.

Our goal is to infer both latent parameters and latent state
variables. However, since the inference partially depends on
the random walk which generates the latent state variables,
we use the sequential sampling based inference strategy that
is widely used in sequential monte carlo sampling [20] [21],
particle filtering [22], and particle learning [18] to learn the
distribution of both parameters and the state random variables.

Since state ηj,t−1 changes over time with a standard Gaus-
sian random walk, it follows a Gaussian distribution after
accumulating t− 1 standard Gaussian random walks. Assume
ηj,t−1 ∼ N (µηj ,Σηj ), a particle is defined as follows.

Definition 1 (Particle). A particle for predicting yj,t is a
container which maintains the current status information for
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value prediction. The status information comprises of random
variables such as σ2

j , cwj , θj , Rcj , Rθj , and ηj,t, and the
hyper parameters of their corresponding distributions such as
α and β, µc, µθ, λ1, λ2, µηk

and Σηk
.

A. Re-sample Particles with Weights
At time t−1, a fixed-size set of particles are maintained for

the value prediction of the jth time series, where the particle
set is denoted as Pj,t−1 and the number of particles in Pj,t−1

is B. Let P(i)
j,t−1 be the ith particle in the particle set Pj,t−1 at

time t−1, where 1 ≤ i ≤ B. Each particle P(i)
j,t−1 has a weight,

denoted as ρ(i), indicating its fitness for the new observed data
at time t. Note that

∑B
i=1 ρ

(i) = 1. The fitness of each particle
P(i)
j,t−1 is defined as the likelihood of the observed data xt and

yj,t. Therefore,

ρ(i) ∝ P (xt,yj,t|P(i)
j,t−1). (16)

Further, according to Equation 14, the distribution of yj,t is
determined by the random variables cwj , θj , σ2

j and ηj,t.
Therefore, we can compute ρ(i) in proportional to the

density value at yj,t. Thus,

ρ(i) ∝
∫∫

ηj,t,ηj,t−1

{N (yj,t|(cwj + θj ⊙ ηj,t)
ᵀxt, σ

2
j )

N (ηj,t|ηj,t−1, IP )N (ηj,t−1|µηj ,Σηj )}
dηj,t dηj,t−1,

where state variables ηj,t and ηj,t−1 are integrated out due
to their change over time, and cwj , θj , σ2

j are from P(i)
j,t−1.

Then we obtain
ρ(i) ∝ N (mj ,Qj), (17)

where
mj = (cwj + θj ⊙ ηj,t)

ᵀxt

Qj = σ2
j + (xt ⊙ θj)

ᵀ(IP +Σηj)(xt ⊙ θj).
(18)

Before updating any parameters, a re-sampling process is
conducted. We replace the particle set Pj,t−1 with a new set
Pj,t, where Pj,t is generated from Pj,t−1 using sampling with
replacement based on the weights of particles. Then sequential
parameter updating is based on Pj,t.

B. Latent State Inference
At time t−1, the sufficient statistics for state ηj,t−1 are the

mean (i.e., µηj ) and the covariance (i.e., Σηj ). Provided with
the new observation data xt and yj,t at time t, the sufficient
statistics for state ηj,t need to be re-computed. We apply
the Kalman filtering [23] method to recursively update the
sufficient statistics for ηj,t based on the new observation and
the sufficient statistics at time t− 1. Let µ′

ηj
and Σ′

ηj be the
new sufficient statistics of state ηj,t at time t. Then,

µ′
ηj

= µηj +Gj(yj,t − (cwj + θj ⊙ ηj,t)
ᵀxt))︸ ︷︷ ︸

Correction by Kalman Gain

,

Σ′
ηj = Σηj + IP − GjQjG

ᵀ
j︸ ︷︷ ︸

Correction by Kalman Gain

,
(19)

where Qj is defined in Equation 18 and Gj is Kalman
Gain [23] defined as

Gj = (IP +Σηj
)(xt ⊙ θj)Q

−1
j .

As shown in Equation 19, both µ′
ηj

and Σ′
ηj are estimated

with a correction using Kalman Gain Gj(i.e., the last term in
both two formulas). With the help of the sufficient statistics for
the state random variable, ηj,t can be drawn from the Gaussian
distribution

ηj,t ∼ N (µ′
ηj
,Σ′

ηj ). (20)

C. Augmented Variable Inference
The augmented variables Rcj and Rθj are diagonal matri-

ces composed of independent random variables γ2
c,1, ..., γ

2
c,P

and γ2
θ,1, ..., γ

2
θ,P , respectively. The independent random vari-

ables are drawn from exponential distribution as follows,

γc,p ∼ Exp(λ2
1/2),

γθ,p ∼ Exp(λ2
2/2),

(21)

where 1 ≤ p ≤ P . At each time stamp, those augmented
random variables are sampled independently. Assume Rj =[
Rcj

0
0 Rθj

]
, where Rj is a 2P × 2P -dimensional matrix.

D. Parameter Inference

At time t − 1, the sufficient statistics for the parameter
random variables (σ2

j , cwj
, θj) are (α, β, µc, µθ). Let zt =

(xt
ᵀ, (xt⊙ηj,t)

ᵀ)ᵀ, µj = (µc
ᵀ, µθ

ᵀ)ᵀ, and νj = (cwj
ᵀ, θj

ᵀ)ᵀ

where zt, µj , and νj are 2P -dimensional vector.
Therefore, the inference of cwj

and θj is equivalent to infer

νj with its distribution νj ∼ N (µj , σ
2
jR

1
2
j ΣjR

1
2
j ), where Σj

is initialized with an identity matrix time 0. Assume Σ′
j ,

µ′
j, α

′, and β′ be the sufficient statistics at time t which are
updated based on the sufficient statistics at time t− 1 and the
new observation data. The sufficient statistics for parameters
are updated as follows:

Σ′
j = (Σ−1

j +R
1
2
j ztz

ᵀ
tR

1
2
j )

−1,

µ′
j = R

1
2
j Σ

′
jR

1
2
j ztyj,t +R

1
2
j Σ

′
jΣjR

1
2
j µj),

α′ = α+
1

2
,

β′ = β +
1

2
(µᵀ

jR
− 1

2
j Σ−1

j R
− 1

2
j µj + y2

j,t − µ′ᵀ
j R

− 1
2

j Σ′−1
j R

− 1
2

j µ′
j).

(22)

At time t, the sampling process for σ2
j and νj is summarized

as follows:

σ2
j ∼ IG(α′, β′),

νj ∼ N (µ′
j , σ

2
jR

1
2
j Σ

′
jR

1
2
j ).

(23)

E. Algorithm

Putting all the aforementioned things together, an algorithm
based on the proposed time-varying Bayesian Lasso model is
provided below.

Online inference for time-varying Bayesian Lasso model
starts with MAIN procedure, as presented in Algorithm 1.
The parameters B, L, α, β, λ1 and λ2 are given as the
input of MAIN procedure. The initialization is executed from
line 2 to line 6. As new observation y�,t arrives at time
t, xt is built using the time lag, then wj,t is inferred by
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calling UPDATE procedure. Especially in the UPDATE pro-
cedure, we use the resample-propagate strategy in particle
learning [18] rather than the propagate-resample strategy in
particle filtering [22]. With the resample-propagate strategy,
the particles are re-sampled by taking ρ(i) as the ith particle’s
weight, where the ρ(i) indicates the occurring probability of
the observation at time t given the particle at time t− 1. The
resample-propagate strategy is considered as an optimal and
fully adapted strategy, avoiding an importance sampling step.

Algorithm 1 The algorithm for time-varying Bayesian Lasso
model

1: procedure MAIN(B, L, α, β, λ1, λ2) ◃ main entry
2: Initialize µc = 0, µθ = 0.
3: for j ← 1,K do
4: Initialize regression for yj with B particles.
5: Initialize Σj with identity matrix.
6: end for
7: for t← 1, T do
8: Get xt using time lag L.
9: for j ← 1,K do

10: UPDATE(xt, yj,t).
11: Output wj,t according to Eq. 13.
12: end for
13: end for
14: end procedure

15: procedure UPDATE(xt, yj,t) ◃ update the inference.
16: for i← 1, B do ◃ Compute weights for each particle.
17: Compute weight ρ(i) of particle P(i)

j,t−1 by Eq. 17.
18: end for
19: Re-sample Pj,t from Pj,t−1 according to ρ(i)s.
20: for i← 1, B do ◃ Update statistics for each particle.
21: Update the sufficient statistics for ηj,t by Eq. 19.
22: Sample ηj,t according to Eq. 20.
23: Construct augmented variables Rj with Eq. 21.
24: Update the statistics for σ2

j , cwj , θj by Eq. 22.
25: Sample σ2

j , cwj , θj according to Eq. 23.
26: end for
27: end procedure

V. EMPIRICAL STUDY

With the purpose of demonstrating the performance of the
proposed algorithm, we conduct the experiments over both
synthetic and real data sets, and illustrate a real case study
from the system management. Before diving into the discus-
sion of the evaluation in detail, we first outline the general
implementation of the baseline algorithms for comparison,
then verify the proposed algorithm using every data set one
by one. The evaluation on each data set is started with a
brief description of the data and the corresponding evaluation
methods, and followed by the presentation of the comparative
experimental results between the proposed algorithm and the
baseline algorithms.

A. Baseline Algorithms

In the empirical study, we demonstrate the performance
of our method by comparing with the following baseline
algorithms including:

• BLR(q0): It infers the temporal dependencies among time
series using Bayesian Linear Regression with prior dis-
tribution N (0, q−1

0 Id). It has been shown that the setting
of the penalty parameter λ in ridge regression can be
achieved by tuning q0 accordingly [24].

• BLasso(λ): It applies Bayesian Lasso to learn the tem-
poral dependencies, where λ is the L1 penalty parameter.
It presents an online inference for Lasso regression from
Bayesian perspective [15].

• TVLR(q): It makes use of the Time-Varying Linear
Regression from Bayesian perspective, which is capable
of capturing the dynamics of dependency without regu-
larization. The parameter q specifies the prior distribution
N (0, q−1I2d) for both constant and varying components
of the coefficients [29].

One the other hand, we denote our proposed method as
TVLasso(λ1,λ2), where the Time-Varying Bayesian Lasso
regression algorithm is used to infer the time-varying temporal
dependency among time series. The penalty parameters λ1 and
λ2 are presented in Equation 15, determining the sparsity of
both stationary component and drift component, respectively.
Note that the algorithms in [12] and [16] are not included
as baseline algorithms in our experiment, since both are off-
line algorithms, while the work of this paper mainly focuses
on online inference of time-varying temporal dependency.
During our experiments, we extract small subset of data with
early time stamps and employ grid search to find the optimal
parameters for all the algorithm. The parameter settings are
verified by cross validation in terms of the prediction errors
over the extracted data subset.

B. Evaluation Measures

AUC Score: In order to further verify the efficacy of the
proposed method for temporal dependency identification, AUC,
the Area Under the ROC [25], is applied for performance
evaluation due to its independence of priors, costs, and op-
erating points [26]. The value of AUC is the probability that
the algorithm will assign a higher value to a randomly chosen
existing edge than a randomly chosen non-existing edge in
the temporal dependency structure. As we have mentioned in
Section III-A, nonzero value of Wl

ij indicates yi →g yj . It
is reasonable to suppose that a higher absolute value of Wl

ij

implies a larger likelihood of existing a temporal dependency
yi →g yj . At each time t, an AUC score of the algorithm
is obtained by comparing its inferred temporal dependency
structure with the ground truth at t.

Prediction Error: Let Wt be the true coefficient matrix
and Ŵt be the estimated coefficient matrix. We define the
prediction error at time t as ∆ = ||Wt − Ŵt||F , where || •
||F is the Frobenius Norm [27]. A smaller prediction error
indicates a better inference of dynamic temporal structure.

In order to give a clear illustration, we segment the time line
into time buckets with the same predefined size and illustrate
the performance with an average value of the corresponding
measure for every time bucket.
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C. Synthetic Data

The main advantage of using synthetic data sets is that
the detailed dependency structures are known and hence we
can systematically evaluate the performance of our proposed
method with different factors such as noise and sparsity levels
and quantitatively compare with other alternative solutions
using various performance measures.

Synthetic Data Generation: The synthetic data generation
is governed by the parameters shown in Table II. The time

TABLE II: Parameters for Synthetic Data Generation

Name Description
K The number of time series.
T The length of time series.
L The maximum time lag for VAR model.

I
The maximum number of intervals used to segmented
the time line.

s
The sparsity of the temporal dependency, denoted as
the ratio of coefficients with zero value to K.

µ The mean of the noise introduced during regression.
σ2 The variance of the noise introduced during regression.

series data are generated with the VAR model, where the
coefficient value Wl

ij indicates the strength of dependency
yi →g yj . To simulate the time-varying temporal dependen-
cies among time series, five types of dynamics are randomly
injected into the VAR model, depicting the dynamic changes
of the coefficients, including:
(1) Zero Value The coefficient holds a zero value, indicating

no temporal dependency existing. The number of coeffi-
cient with zero value is determined by the sparsity s.

(2) Constant Value The coefficient holds a constant nonzero
value, which is randomly generated from the standard
Gaussian distribution.

(3) Piecewise Constant The time line is randomly segment-
ed into multiple intervals. The number of intervals is
uniformly sampled in (0, I]. During each interval, the
coefficient value is constant. The constant values are
generated from the standard Gaussian distribution.

(4) Periodic Change The coefficient value varies periodi-
cally as time evolves, where the periodic change of the
coefficient is simulated by sin curve whose period is
uniformly sampled from the range (0, T ).

(5) Random Walk The coefficient value at time t is de-
termined by a standard Gaussian random walk from the
value at time t− 1.

The sparsity of the temporal dependencies is regulated by
s, indicating that a coefficient has the probability s to be
generated by type (1). Accordingly, the other four types (2)-
(5) uniformly share the probability 1 − s for simulating the
coefficient.

Dynamic Temporal Dependency Tracking: In order to
show the capability in capturing the dynamic temporal de-
pendency with a visualized straightforward example, we start
with a simulation where K = 20, T = 3000, L = 1, I = 10,
s = 0.9, µ = 0 and σ2 = 1. Both the baseline algorithms
and our proposed algorithm infer the temporal dependency

in an online mode. The performance of all the algorithms
depends on the parameter setting. Therefore, we first conduct
the performance comparison for each algorithm with diverse
parameter settings. Then the one with best performance is
selected for comparison study. Eight coefficients are selected
and displayed in Fig. 5. It shows our proposed algorithm
TVLasso can effectively capture the time-varying temporal
dependency with different types of dynamics. The BLasso
algorithm shows more robustness than BL for zero-value co-
efficient inference, and is more suitable for inference with high
sparsity. The algorithm TVLR captures the dynamic change of
the coefficients better than both BLasso and BL, but it is less
stable when comparing with TVLasso.

Performance Evaluation: We continue to conduct the eval-
uation in terms of AUC and prediction error over a simulation
data set with higher dimension, where K = (30, 40, 50),
T = 5000, L = 1, I = 10, s = 0.9, µ = 0 and
σ2 = 1. The evaluations with different Ks in terms of AUC
are depicted in Fig. 4a, Fig. 4b and Fig. 4c, respectively. The
performance of TVLasso is comparable with TVLR in low
dimensions, while TVLasso quickly catches up with other
baseline algorithms at the beginning and keeps outperforming
them in high dimensions. Comparing with other two baseline
algorithms , TVLR shows a relatively good performance since
it models the dynamic change explicitly.

In terms of prediction error, TVLasso incurs lowest predic-
tion error consistently, shown in Fig. 4d, Fig. 4e and Fig. 4f.
When in high dimension, TVLR gets the highest prediction
error even though it obtains relatively high AUC score, where
the reason is that the AUC is computed based on the absolute
value of the coefficient. The conclusion is that our proposed
algorithm TVLasso is consistent in the coefficient prediction
while TVLR may suffer coefficient prediction with opposite
sign of the truth, especially in high dimensions.

Time Cost: The time cost increases linearly as the number
of particles shown in Fig. 6a.

D. A Case Study In System Management

We conduct the case study in a real system FIU-Miner [28],
which is a fast, integrated and user-friendly system for data
mining in distributed system. FIU-Miner composes every job
as a workflow where a set of computing tasks are organized
in a dependency graph. A job of FIU-Miner can be scheduled
in different ways, such as one-time execution at a particular
time, periodic execution every one predefined time interval. To
help FIU-Miner make decisions on job scheduling, the system
monitoring agents are deployed to all the computing nodes
in the distributed environment, and periodically collect the
information about both resource usage and running processes.
The resource usage information includes CPU utilization,
memory usage, disk I/O, networking I/O, etc. The running pro-
cess information describes the status, the number of running
instances aggregated by the program, running time, and so
forth. An alert is raised if the predefined monitoring situation
persists violated beyond a particular duration. We deploy
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Fig. 4: The temporal dependency identification performance is evaluated in terms of AUC and prediction error. The bucket size
is 200.
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Fig. 5: The temporal dependencies among 20 time series
are leant and eight coefficients among all are selected for
demonstration. Coefficients with zero values are displayed in
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periodic change, random walk and constant value are shown
in (b),(d),(f) and (h), respectively.

our algorithm with FIU-Miner to instantly infer the causal
dependency among the collected monitoring information.

To illustrate the efficacy of our method, we inspect an
alert raised at the time stamp 2016-07-06 01:30:39,852, when a
persistent high system load occurred. The process information
is aggregated by the executable program. The number of
instances for a matrix computation program is identified with
strong dependencies between other system resource monitor-
ing time series. The system monitoring time series as well
as the number of instances for the identified program are
displayed in Fig 6b. Here cpu(%), svmem(%), sswap(%),
dskread(m), dskwrite(100m) and tasknum represent
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Fig. 6: (a) The time cost of TVLasso with different number
of particles. (b) The system resource monitoring time series
collected every 5 seconds.
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the CPU utilization, virtual memory usage, swap memory
usage, the number of bytes reading from the disk, the number
of bytes writing to the disk, and the number of instances
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for a matrix computation program, respectively. cpu(%),
svmem(%) and sswap(%) share the Percent axis, and
dskread(m), dskwrite(100m) and tasknum share the
Quantity axis. Each computing node in the distributed envi-
ronment has 31G memory in total. The causal dependencies
discovered by multiple algorithms are shown in Fig 7. The
tasknum increases linearly to 52 at the beginning, and then
decreases to 0 abruptly.

After meticulously inspecting the source code of the matrix
computation program, each instance allocates 1G memory for
holding the matrix data, but does not explicitly recycle the used
memory after computation. FIU-Miner schedules the program
periodically as a sub-process but does not reap the completed
sub-processes until all the sub-processes have been scheduled.
It ends in a number of zombie processes during scheduling
and causes a resource leak.

As illustrated by the algorithm TVLasso in Fig. 7, at
the early stage, tasknum strongly infers cpu, svmem, and
sswap. After the consumed memory exceeds the total avail-
able memory of the computing node, tasknum has strong
causal relations with dskread and dskwrite. Finally, the
temporal dependencies disappear after all the sub-processes
are reaped by the schedule process of FIU-Miner. However, the
baseline algorithms can not effectively react with the dynamic
changes of temporal dependencies.

VI. CONCLUSION AND FUTURE WORK

In this paper, we take the dynamic change of the underlying
temporal dependencies among time series into account and
explicitly model the dynamic change as a random walk. We
propose a method based on the particle learning to efficiently
infer both parameters and latent variables simultaneously. The
performance of our proposed algorithm is verified by both
synthetic and real data set.

To discover the time-varying temporal dependency among
time series, the choice of penalty parameters is very essential.
One possible future work is to come up with online method
to automatically identify the proper parameters. The time-
varying temporal dependency discovery among time series
unveils the dynamic change of the system structure over time.
Another possible direction is to apply the discovered time-
varying temporal dependency for anomaly detection.
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