
1

Online Interactive Collaborative Filtering Using
Multi-armed Bandit with Dependent Arms

Qing Wang, Chunqiu Zeng, Wubai Zhou,

Tao Li , S. S. Iyengar, Larisa Shwartz, and Genady Ya. Grabarnik

Abstract—Online interactive recommender systems strive to promptly suggest users appropriate items (e.g., movies,
news articles) according to the current context including both user and item content information. Such contextual
information is often unavailable in practice, where only the users’ interaction data on items can be utilized by
recommender systems. The lack of interaction records, especially for new users and items, inflames the performance of
recommendation further. To address these issues, both collaborative filtering, one of the most popular recommendation
techniques relying on the interaction data only, and bandit mechanisms, capable of achieving the balance between
exploitation and exploration, are adopted into an online interactive recommendation setting assuming independent items
(i.e., arms). This assumption rarely holds in reality, since the real-world items tend to be correlated with each other.
In this paper, we study online interactive collaborative filtering problems by considering the dependencies among items.
We explicitly formulate item dependencies as the clusters of arms in the bandit setting, where the arms within a single
cluster share the similar latent topics. In light of topic modeling techniques, we come up with a novel generative model to
generate the items from their underlying topics. Furthermore, an efficient particle-learning based online algorithm is
developed for inferring both latent parameters and states of our model by taking advantage of the fully adaptive
inference strategy of particle learning techniques. Additionally, our inferred model can be naturally integrated with
existing multi-armed selection strategies in an interactive collaborative filtering setting. Empirical studies on two
real-world applications, online recommendations of movies and news, demonstrate both the effectiveness and efficiency
of our proposed approach.

Index Terms—Recommender systems; Interactive collaborative filtering; Topic modeling; Cold-start problem; Particle
learning.

F

1 INTRODUCTION

THe overwhelming amount of data requires
an efficient online interactive recommendation

system where online users constantly interact with
the system, and user feedback is instantly collected
to improve recommendation performance. Online
interactive recommender systems are challenged
to immediately recommend the most proper items
(e.g., movies, news articles) to users based on the

• Q. Wang, C. Zeng, W. Zhou, T. Li and S. S. Iyengar are with
the School of Computing and Information Sciences, Florida
International University, Miami, FL, 33199.
E-mail: {qwang028, czeng001, wzhou005, taoli, iyen-
gar}@cs.fiu.edu

• Larisa Shwartz is with the department of Cognitive Service Foun-
dations, IBM T.J. Watson Research Center, Yorktown Heights,
NY, 10598.
E-mail: lshwart@us.ibm.com

• Genady Ya. Grabarnik is with the department of Math & Com-
puter Science, St. John’s University, Queens, NY, 11439.
E-mail: grabarng@stjohns.edu

current user and item content information aiming
to continuously maximize users’ satisfaction over a
long run. To achieve this goal, it becomes a critical
task for such recommender systems to constantly
track user preferences and recommend interesting
items from a large item repository.

In the process of identifying the appropriate
match between the user preferences and the target
items the recommender systems encounter difficul-
ties due to several existing practical challenges. One
challenge is the well-known cold-start problem since
a number of users/items might be completely new
to the system, that is, they may have no historical
records at all. This problem makes recommender
systems ineffective unless additional information
including both items and users is collected [45], [12].
The second challenge is that most recommender
systems typically assume the entire set of contextual
features with respect to both users and items can be
accessed to infer users’ preference. Due to a number

2

of reasons (e.g., privacy or sampling constraints), it
is challenging to obtain all relevant features ahead
of time, thus rendering many factors unobservable
to recommendation algorithms.

In the first challenge, an exploration or exploitation
dilemma [6] is identified in the aforementioned
setting. A tradeoff between two competing goals
needs to be considered in recommender systems:
maximizing user satisfaction using their consump-
tion history, while gathering new information for
improving the goodness of match between user
preferences and items [24]. This dilemma is typi-
cally formulated as a multi-armed bandit problem
where each arm corresponds to an item. The recom-
mendation algorithm determines the strategies for
selecting an arm to pull according to the contextual
information at each trial. Pulling an arm indicates
that the corresponding item is recommended. When
an item matches the user preference (e.g., a recom-
mended news article or movie is consumed), a re-
ward is obtained; otherwise, no reward is provided.
The reward information is fed back to optimize
the strategies. The optimal strategy is to pull the
arm with the maximum expected reward based on
the historical interaction on each trial, and then to
maximize the total accumulated rewards for the
whole series of trials.

Collaborative filtering (CF) is widely applied
in recommender systems [34], [7], [22] to address
the second challenge. CF has gained its popularity
due to its advantage over other recommendation
techniques, where CF requires no extra information
about items or users for recommendation but only
users’ historical ratings on items [20], [21]. Further,
considering both aforementioned challenges simul-
taneously aggravates the difficulties when recom-
mending items. Recently, an online interactive col-
laborative filtering system has been suggested [21],
[47] adopting both techniques, multi-armed bandit
and collaborative filtering. Typically, one collabora-
tive filtering task is formulated as a matrix factor-
ization problem. Matrix factorization derives latent
features for both users and items from the histor-
ical interaction records. It assumes that a user’s
preference (i.e., rating) on a given item can be
predicted considering items’ and users’ latent fea-
ture vectors. Based on this assumption, multi-armed
bandit policies make use of the predicted reward
(i.e., user preference) for arm (i.e., item) selection.
The feedback occurring between the current user
and arm is used to update the user’s and arm’s
latent vectors, without impacting the inference of
other arms’ latent vectors assuming arms are inde-

pendent from each other. However, the assumption
about the independency among arms rarely holds in
real-world applications. For example, in the movie
recommendation scenario, each movie corresponds
to an arm. The dependent arms (i.e., movies) typi-
cally share similar latent topics (e.g., science fiction
movies, action movies, etc.), and are likely to re-
ceive similar rewards (i.e., ratings or feedback) from
users. Intuitively, the dependencies among arms
can be utilized for reward prediction improvement
and further facilitated the maximization of users’
satisfaction in a long run.

In this paper, we introduce an interactive collab-
orative topic regression model that utilizes bandit
algorithms with dependent arms to recommend ap-
propriate items for target users. A sequential online
inference method is proposed to learn the latent
parameters and infer the latent states. We adopt a
generative process based on topic model to explic-
itly formulate the arm dependencies as the clusters
on arms, where dependent arms are assumed to be
generated from the same cluster. Every time an arm
is pulled, the feedback is not only used for inferring
the involved user and item latent vectors, but it
is also employed to update the latent parameters
with respect to the arm’s cluster. The latent cluster
parameters further help with reward prediction for
other arms in the same cluster. The fully adaptive
online inference strategy of particle learning [11]
allows our model to effectively capture arm depen-
dencies. In addition, the learnt parameters can be
naturally integrated into existing multi-arm selec-
tion strategies, such as UCB and Thompson sampling.
We conduct empirical studies on two real-world ap-
plications, movie and news recommendations. The
experimental results demonstrate the effectiveness
of our proposed approach.

The rest of this paper is organized as follows.
In Section 2, we provide a brief summary of prior
work relevant to collaborative filtering, collabora-
tive topic model, multi-armed bandit and the online
inference with particle learning. We formulate the
underlying problem in Section 3. The solution to
the problem is presented in Section 4. Extensive
evaluation results are reported in Section 5. Finally,
Section 6 concludes the paper.

2 RELATED WORK

This section highlights the existing works in the
literature that are closely relevant to our work.

3

2.1 Interactive Collaborative Filtering

In recommender systems, collaborative filtering
(CF) has gained an extensive popularity in recent
decades due to its capability of identifying the user
preference from the historical interactions between
users and items [21], [28], [31], [32], [33], [34],
[43]. However, it is still an immense challenge to
effectively predict preferences for new users. This
challenge typically referred to as the cold-start prob-
lem [3], [10], [35]. A straightforward solution to
address this issue involves two separated stages,
where it first explicitly figures out the user pro-
file, then makes further recommendation based on
the established user profile [29], [30]. By contrast,
some preliminary works, referred to as interactive
collaborative filtering (ICF), have recently emerged
as an alternative way to deal with the cold-start
issue [21], [47]. These works do not explicitly ful-
fill the two stages separately, but formulate the
recommendation problem as a multi-armed bandit
problem, and then naturally integrate the two stages
together by striking a balance between exploration
and exploitation. Our work is primarily relevant to
this research area addressing the ICF problem.

The ICF problem is first introduced in [47],
where several multi-armed bandit algorithms (e.g.,
Thompson sampling [13], UCB [9]) are used for item
recommendation in light of the user-item rating
prediction with the probabilistic matrix factoriza-
tion (PMF) framework [31]. However, the proposed
method in [47] does not work in a completely on-
line interactive mode since the multi-armed bandit
algorithms partially rely on the latent item feature
vector distributions, which are learnt with the of-
fline Gibbs sampling in advance. In [21], an effi-
cient Thompson sampling algorithm named parti-
cle Thompson sampling (PTS) addresses the ICF
problem with Bayesian probabilistic matrix factor-
ization (BPMF) [32] in a completely online mode. To
reduce the reward prediction uncertainty, Wang et
al. [39] incorporated the contextual features into the
learned latent feature vectors for ICF problem. But
these methods assume the latent item feature vec-
tors in the ICF setting are independent. Although
the work in [26] formulates the arm dependencies
as an arm clustering problem, it fails to present an
efficient online method to learn arm dependencies.
By comparison, we explicitly learn the dependent
arms with a generative topic model in the ICF set-
ting and develop an efficient online solution capable
of tracking the dependencies between arms as well
as addressing the online recommendation.

Some recent studies explore the bandit depen-
dencies for a group recommendation delivery by as-
suming that users in the same group react with sim-
ilar feedback to the same recommended item [18],
[37], [40], [42], [44]. Most existing works utilize the
context information for users or predefined social
network to build the user dependencies. Wu et
al. [44] exploit social information to find depen-
dency among users for improving the accuracy
of reward prediction. Wang et al. [40] propose a
context-aware collaborative bandit model, which
could incorporate mutual influence among users
directly for matrix completion. In [42], an interactive
social recommendation model is proposed to pre-
dict the target user’s preference using a weighted
combination of a user’s preferences and his/her
friends’ preferences. A context-dependent cluster-
ing of bandits algorithm [17] is investigated, where
the clusters over users are based on the current item
content. Our work is orthogonal to those studies
since we investigate the arm (item) dependencies in
a bandit model rather than the dependencies among
users. Wang et al. [41] come up with hierarchical
multi-armed bandit algorithms leveraging the ex-
plicit taxonomy information of items for online rec-
ommendation. Our proposed method is capable of
instantly learning the item dependencies during the
online interactive recommendation process without
explicit context information provided.

Multi-armed bandits are widely adopted in di-
verse applications such as online advertising [27],
[45], web content optimization [1], [24], and robotic
routing [5]. The core task of bandit problem is to bal-
ance the tradeoff between exploration and exploita-
tion. A series of algorithms have been proposed to
deal with this problem including ε-greedy [38], UCB
[9], [25], EXP3 [4], Thompson sampling [2]. In this
paper, we model the ICF problem as a multi-armed
bandit problem with dependent arms and proposes
online recommendation methodologies based on
UCB and Thompson sampling.

2.2 Sequential Online Inference
Our model leverages topic modeling [8] to formu-
late arm dependencies and sequential online infer-
ence to infer the latent states and learn the unknown
parameters. Popular sequential learning methods
include sequential monte carlo sampling [15], [19]
and particle learning [11], [46].

Sequential Monte Carlo (SMC) sampling con-
sists of a set of Monte Carlo methodologies to
solve the filtering problem [16]. These methodolo-
gies allow inference of full posterior distributions

4

in general state space models, which may be both
nonlinear and non-Gaussian.

Particle learning provides state filtering, sequen-
tial parameter learning and smoothing in a general
class of state space models [11]. Particle learning
is used to approximate the sequence of filtering
and smoothing distributions in light of parameter
uncertainty for a wide class of state space models.
The central idea behind particle learning is to create
a particle directly from the approximation to the
joint posterior distribution of states and conditional
sufficient statistics of fixed parameters in a fully-
adapted resample-propagate framework. In this
paper, we leverage the idea of particle learning for
both latent state inference and parameter learning.

3 PROBLEM FORMULATION

In this section, we provide a mathematical formu-
lation of the interactive collaborative filtering (ICF)
problem into a bandit setting. Then we introduce a
new generative model describing the dependency
among arms (i.e. items). A glossary of notations
mentioned in this paper is summarized in Table 1.

TABLE 1: Important Notations
Notation Description

M,N number of rows (users) and columns (items).
R ∈ RM×N the rating matrix.
S(t) the sequence of (n(t− 1), rm,n(t−1)) observed until time t.
n(t) the recommended item index in the t-th iteration.
rm,t the rating (reward) of the m-th user by pulling the given item in

the t-th iteration.
ym,t the predicted rating for the m-th user over given item in the t-th

iteration.
π the policy to recommend items sequentially.
Rπ the cumulative rating (reward) of the policy π.
K the number of topics and the number of dimensions for latent

vectors.
pm ∈ RK the latent feature vector of the m-th user.
qn ∈ RK the latent feature vector of the n-th item.
Φk ∈ RN the item distribution of the k-th topic.
Pm,n(t−1) the set of particles for the item n(t−1) given user m at time t−1.
zm,t the latent topic of the m-th user in the t-th iteration.
xm,t the selected item of the m-th user in the t-th iteration.
λ Dirichlet priors over topics for topic model.
η Dirichlet priors over items for topic model.
σ2n the variance of rating prediction.
α, β the hyper parameters determine the distribution of σ2n.
µq, Σq the hyper parameters determine the gaussian distribution of qn.
ξ the observation noise of the rating

3.1 Basic Concepts and Terminologies
Assume that there are M users and N items in
the system. The preferences of the users for the
items are recorded by a partially observable matrix
R = {rm,n} ∈ RM×N , where the rating score rm,n in-
dicates how user m would like item n. The basic col-
laborative filtering task is to predict the unknown
rating score in light of the observed rating scores
in R. However, it is very challenging to fulfill the

task in practice due to the high dimensionality and
sparsity of the rating matrix. Matrix factorization
addresses this challenge by mapping each user m
and item n to the latent feature vectors pm ∈ RK
and qn ∈ RK in a shared low K-dimension space
(typically, K � M,N). It assumes that the rating
rm,n can be predicted by

r̂m,n = pᵀ
mqn. (1)

Therefore, the latent features {pm} and {qn} can
be learned by minimizing the prediction error for
all observed ratings in R, while each unobserved
rating value can be estimated using Equation (1)
with its corresponding latent features learned by
matrix factorization. In practice, since the feedback
(i.e., rating scores) from users is received over time,
the system is required to address the collaborative
filtering problem in an interactive mode, which is
referred to as an interactive recommender system.

In an interactive recommender system, user m
constantly arrives to interact with the system over
time. At each time t = [1, . . . , T], the system, accord-
ing to the observed rating history, recommends an
item n(t) to the corresponding user m. After con-
suming item n(t), the feedback (i.e., rating) rm,n(t)
from user m is collected by the system and further
utilized to update the model for the next item
delivery. The interactive recommendation process
involves a series of decisions over a finite but pos-
sibly unknown time horizon T . Accordingly, such
an interactive recommendation process is modeled
as a multi-armed bandit problem, where each item
corresponds to an arm. Pulling an arm indicates that
its corresponding item is being recommended and
the rating score is considered as the reward received
after pulling the corresponding arm.

Let S(t) be the available information at time t
collected by the system for the target user m,

S(t) = {(n(1), rm,n(1)), . . . , (n(t− 1), rm,n(t−1))}. (2)

A policy π is defined as a function and used to select
an arm based on the current cumulative information
S(t),

n(t) = π(S(t)). (3)

The total rewards received by the policy π after T
iterations is

Rπ =

T∑
t=1

rm,π(S(t)). (4)

The optimal policy π∗ is defined as the one with
maximum accumulated expected reward after T

5

iterations,

π∗ = arg max
π

E(Rπ) = arg max
π

T∑
t=1

E(rm,π(S(t))|t). (5)

Therefore, our goal is to identify an optimal policy
for maximizing the total rewards. Herein we use
reward instead of regret to express the objective
function, since maximization of the cumulative re-
wards is equivalent to minimization of regret dur-
ing the T iterations [47]. Before selecting one arm
at time t, a policy π typically learns a model to
predict the reward for every arm according to the
historical accumulated information S(t). The reward
prediction helps the policy π make decisions to
increase the total rewards.

In the latent factor model [31], [32], the rating
is estimated by a product of user and item feature
vectors pm and qn in Equation (1). From the proba-
bilistic perspective, PMF introduces an observation
noise ξ, a zero-mean Gaussian noise with variance
σ2 (i.e., ξ ∼ N (0, σ2)), to the rating prediction
function given in Equation (1). The derived rating
prediction is as follows:

rm,n = pᵀ
mqn + ξ. (6)

In this setting, Equation (5) can be re-formulated as:

π∗ = arg max
π

T∑
t=1

Epm,qπ(S(t))(p
ᵀ
mqπ(S(t))|t). (7)

Consequently, the goal of an interactive recom-
mender system is reduced to the optimization of
the objective function in Equation (7).

Thompson Sampling, one of earliest heuristics
for the bandit problem [13], belongs to the prob-
ability matching family. Its main idea is to ran-
domly allocate the pulling chance according to the
probability that an arm gives the largest expected
reward at a particular time t. Based on the objective
function in Equation (7), the probability of pulling
arm n can be expressed as follows:

p(n(t) = n) =

∫
I[E(rm,n|pm,qn) = max

i
E(rm,i|pm,qi)]

p(pm,qn|t)dpmdqn.
(8)

At each time t, Thompson sampling samples both
the user and item feature vectors together from their
corresponding distributions, and then selects the
item that leads to the largest reward expectation.
Therefore, using Thompson sampling, the item se-
lection function can be defined as:

n(t) = arg max
n

(p̃ᵀ
mq̃n|t), (9)

where p̃m and q̃n denote the sampled feature vec-
tors for user m and item n, respectively.

To accomplish Thompson sampling, it is critical
to model the random variable pm and qn using
distributions, where the latent feature vectors can be
easily sampled and the feedback at every time can
be reasonably integrated. Most of the previous stud-
ies suppose a Gaussian prior for both user and item
feature vectors, with an assumption that items are
independent from each other [21], [47]. However,
this assumption rarely holds in real applications. In
the following section, we explicitly formulate the
dependent arms with a generative model.

3.2 Modeling the Arm Dependency

Based on the fact that similar items (i.e., arms) are
likely to receive similar feedback (i.e., rewards),
we assume that a dependency exists among sim-
ilar items. The dependencies among items can be
further leveraged to improve the users’ preferences
inference on a particular item even if the item has
little historical interaction data in the system. The
challenge here lies in how to sequentially infer the
arms’ dependencies as well as the users’ preferences
simultaneously, providing the feedback over time.

In our work, the arms’ dependencies are ex-
pressed in the form of the clusters of arms, where
the dependent arms fall into the same one. In order
to explore the dependencies in the bandit setting,
Latent Dirichlet Allocation (LDA) [8], a generative
statistic model for topic modeling, is adopted to
construct the arms’ clusters. We propose the ICTR
(Interactive Collaborative Topic Regression) model
to infer the clusters of arms as well as the arm
selection.

The main idea of our model is to treat an item n
as a word, while consider a user m as a document.
All the items rated by a user indicate the hidden
preferences of the user, analogous to the scenario
in topic modeling where the words contained in
a document imply its latent topics. Specifically, let
K be the number of latent aspects (i.e., topics or
clusters) the users concern when consuming items.
We assume that pm ∈ RK corresponds to the latent
vector for user m, where the k-th component of pm
indicates the user’s preference over the k-th aspect
of items. Further, qn ∈ RK is supposed to be the
latent vector for item n, and the k-th component
value of qn represents that it belongs to the k-
th cluster. The rating score rm,n, given by user m
after consuming item n, is assumed to be the inner
product of pm and qn. By linking to the topic model,

6

a generative process for user ratings is accordingly
introduced and presented in Figure 1.

rm,t

qn

N

T

K

T
M

pm zm,t

k

xm,t

q

q

ym,t

2
n

Fig. 1: The graphic model for the ICTR model. Random
variable is denoted as a circle. The circle with filled
color denotes the observed random variable. Red dot
represents a hyper parameter.

Based on the above description, the user latent
vector pm is assumed to follow a Dirichlet prior
distribution with a predefined hyper parameter λ,
shown in Equation (10).

pm|λ ∼ Dir(λ). (10)

As presented in Equation (6), we denote σ2 as the
variance of the noise for reward prediction and
assume σ2n is drawn from the Inverse Gamma (IG)
distribution shown in the following.

p(σ2
n|α, β) = IG(α, β), (11)

where α and β are predefined hyper parameters for
IG distribution.

Given σ2n, the item latent vector qn is generated
by a Gaussian prior distribution as follows:

qn|µq,Σq, σ
2
n ∼ N (µq, σ

2
nΣq), (12)

where µq and Σq are predefined hyper parameters.
Further, let Φk ∈ RN be the item distribution for

topic k. Similar to pm, Dirichlet distribution is spec-
ified as the prior of Φk presented in Equation (13).

Φk|η ∼ Dir(η), (13)

where η ∈ RN is the hyper parameter.
When user m arrives to interact with the system

at time t, one of K topics, denoted as zm,t, is first
selected according to the user’s latent preference
pm, indicating that the user m shows interest in
the topic zm,t at this moment. Accordingly, zm,t
is supposed to follow a multinomial distribution
governed by pm as follows,

zm,t|pm ∼Mult(pm). (14)

W.L.O.G, we assume zm,t = k, and then the item
distribution for topic k (i.e., Φk) is for generating

the item xm,t recommended to the user m at time
t. We assume the random variable xm,t follows the
multinominal distribution ruled by Φk, i.e.,

xm,t|Φk ∼Mult(Φk). (15)

W.L.O.G, item n is assumed to be selected by
user m at time t (i.e., xm,t = n) where the latent
vector corresponding to item n is qn. Let ym,t be the
predicted reward (i.e., rating), given by user m at
time t. The predicted reward ym,t can be inferred by

ym,t ∼ N (pᵀ
mqn, σ

2
n). (16)

By Equation (16), the rewards of different items
are predicted. Based on the predicted rewards, the
policy π selects an item and recommends it to
user m, considering the tradeoff between exploita-
tion and exploration. After consuming the recom-
mended item, the system receives the actual reward
rm,t from user m. The objective of the model is to
maximize the expected accumulative rewards in a
long run as described in Equation (5).

In this section, taking the clusters of arms into
account, we formally introduced our ICTR model,
which integrates matrix factorization with topic
modeling in the bandit setting. We develop our
solution to infer ICTR model from a Bayesian per-
spective in the following section.

4 METHODOLOGY AND SOLUTION

In this section, we present the methodology for
online inferences of ICTR model.

The posterior distribution inference involves five
random variables, i.e., pm, zm,t, Φk, qn, and σ2n.
According to the graphical model in Figure 1, the
five random variables belong to two categories:
parameter random variable and latent state random
variable. Φk, pm, qn, and σ2n are parameter random
variables since they are assumed to be fixed but
unknown, and their values do not change with time.
Instead, zm,t is referred to as a latent state random
variable since it is not observable and its value
is time dependent. After pulling arm n(t), where
n(t) = xm,t according to Equation (15) at time t, a
reward is observed as rm,t. Thus, xm,t and rm,t are
referred to as observed random variables.

Our goal is to infer both latent parameter vari-
ables and latent state random variables to sequen-
tially fit the observed data at time t − 1, and pre-
dict the rewards for arm selection with respect to
the incoming user at time t. However, since the
inference of our model cannot be conducted by a
simple closed-form solution, we adopt the sequen-
tial sampling-based inference strategy that is widely

7

used in sequential Monte Carlo sampling [36], par-
ticle filtering [14], and particle learning [11] to learn
the distribution of both parameter and state ran-
dom variables. Specifically, particle learning that
allows both state filtering and sequential parameter
learning simultaneously is a perfect solution to our
proposed model inference. In order to develop the
solution based on particle learning, we first define a
particle as follows.
Definition 1 (Particle). A particle for predicting the

reward ym,t is a container that maintains the
current status information for both user m and
item xm,t. The status information comprises of
random variables such as pm, σ2n, Φk, qn, and
zm,t, as well as the hyper parameters of their
corresponding distributions, such as λ, α, β, η,
µq and Σq.

In particle learning, each particle corresponds to
a sample for modeling inference status information.
At each time stamp, particles are re-sampled accord-
ing to their fitness to the current observable data.
Then, the re-sampled particles are propagated to
new particles and obtain the status information for
the next time stamp. In the following subsections,
we develop our solution based on particle learning.

4.1 Re-sample Particles with Weights
At time t − 1, a fixed-size set of particles is main-
tained for the reward prediction for each arm n(t−1)
given user m. We denote the particle set at time t−1
as Pm,n(t−1) and assume the number of particles
in Pm,n(t−1) is B. Let P(i)

m,n(t−1) be the ith particles
given both the user m and the item n(t− 1) at time
t− 1, where 1 ≤ i ≤ B. Each particle P(i)

m,n(t−1) has a
weight, denoted as ρ(i), indicating its fitness for the
new observed data at time t. Note that

∑B
i=1 ρ

(i) = 1.
The fitness of each particle P(i)

m,n(t−1) is defined as
the likelihood of the observed data xm,t and rm,t.
Therefore,

ρ(i) ∝ p(xm,t, rm,t|P(i)
m,n(t−1)). (17)

Further, ym,t is the predicted value of rm,t. The
distribution of ym,t, determined by pm, qn, zm,t, Φk

, and σ2n, has been described in Section 3.2.
Therefore, we can compute ρ(i) as proportional

to the density value given ym,t = rm,t and xm,t = n.
Thus, we obtain

ρ(i) ∝
K∑

zm,t=1

{N (rm,t|(pᵀ
mqn, σ

2
n)

• p(zm,t = k, xm,t = n|P(i)
m,n(t−1))},

where

p(zm,t = k, xm,t = n|P(i)
m,n(t−1))

=

∫∫
pm,Φk

p(zm,t = k, xm,t = n,pm,Φk|λ, η)dpmdΦk

=

∫
pm

Mult(zm,t = k|pm)Dir(pm|λ)dpm

•
∫

Φk

Mult(xm,t = n|Φk)Dir(Φk|η)dΦk

= E(pm,k|λ) • E(Φk,n|η).
(18)

Thus, we have:

ρ(i) ∝
K∑

zm,t=1

{N (rm,t|(pᵀ
mqn, σ

2
n)•E(pm,k|λ)•E(Φk,n|η)},

(19)where E(pm,k|λ) and E(Φk,n|η) represent the con-
ditional expectations of pm,k and Φk,n given the
observed reward λ and η of P(i)

m,n(t−1) . The expec-
tations can be inferred by E(pm,k|λ) = λk∑K

k=1 λk
and

E(Φk,n|η) =
ηk,n∑N

n=1 ηk,n
.

Before updating any parameters, a re-sampling
process is conducted. We replace the particle set
Pm,n(t−1) with a new set Pm,n(t), where Pm,n(t) is
generated from Pm,n(t−1) using sampling with re-
placement based on the weights of particles. Then
sequential parameter updating is based on Pm,n(t).

4.2 Latent State Inference
Provided with the new observation xm,t and rm,t at
time t, the random state zm,t can be one of K topics
and the posterior distribution of zm,t is shown as
follows:

zm,t|xm,t, rm,t,P(i)
m,n(t−1) ∼Mult(θ), (20)

where θ ∈ RK is the parameter specifying the multi-
nominal distribution. According to Equation (18),
since

p(zm,t|xm,t, rm,t, λ, η) ∝ p(zm,t, xm,t|rm,t, λ, η),

θ can be computed by θk ∝ E(pm,k|rm,t, λ) •
E(Φk,n|rm,t, η). Further, E(pm,k|rm,t, λ) and
E(Φk,n|rm,t, η) can be obtained as follows,

E(pm,k|rm,t, λ) =
I(zm,t = k)rm,t + λk∑K
k=1[I(zm,t = k)rm,t + λk]

,

E(Φk,n|rm,t, η) =
I(xm,t = n)rm,t + ηk,n∑N
n=1[I(xm,t = n)rm,t + ηk,n]

.

(21)

where I(•), an indicator function, returns 1 when
the input boolean expression is true, otherwise re-
turns 0. Specifically, if rm,t ∈ {0, 1}, the value of rm,t
indicates whether xm,t should be included in the

8

preferred item list of the user m. If rm,t ∈ [0,+∞),
the value of rm,t implies how the user m likes the
item xm,t. Therefore, our solution can effectively
handle the non-negative rating score at different
scales.

4.3 Parameter Statistics Inference

At time t− 1, the sufficient statistics for the param-
eter random variables (qn, σ2n, pm, Φk) are (µq, Σq,
α, β, λ, η). Assume µ′q, Σ′q, α′, β′, λ′, and η′ are the
sufficient statistics at time t, which are updated on
the basis of both the sufficient statistics at time t− 1
and the new observation data (i.e, xm,t and rm,t).
The sufficient statistics for parameters are updated
as follows:
Σ′qn = (Σ−1qn + pmpᵀ

m)−1, µ′qn = Σ′qn(Σ−1qnµqn + pmrm,t)

α′ = α+
1

2

β′ = β +
1

2
(µᵀ

qnΣ−1qnµqn + rᵀm,trm,t − µ′ᵀqnΣ′−1qn µ
′
qn)

λ′k = I(zm,t = k)rm,t + λk, η′k,n = I(xm,t = n)rm,t + ηk,n
(22)

At time t, the sampling process for the parameter
random variables σ2n, qn, pm and Φk is summarized
as below:

σ2
n ∼ IG(α′, β′), qn|σ2

n ∼ N (µ′qn , σ
2
nΣ′qn),

pm ∼ Dir(λ′), Φk ∼ Dir(η′).
(23)

4.4 Integration with Policies

In our ICTR model, when user m arrives at time
t, reward rm,t is unknown since it is not observed
until one of arms xm,t is pulled. Without observed
xm,t and rm,t, the particle re-sampling, latent state
inference, and parameter statistics inference for time
t cannot be conducted. Therefore, we utilize the
latent vectors pm and qn, sampled from their corre-
sponding posterior distributions by Equation (23) at
time t−1, to predict the reward for each arm. In this
section, two policies based on Thompson sampling
and UCB for ICF are integrated with our model.

In the model, every item has B independent
particles given the user m. Each particle i contains
its latent variables and parameters, and produces
an independent reward prediction r(i)m,t. Specifically,
according to Thompson sampling discussed in Sec-
tion 3.1, we predict the reward of pulling arm nwith
the average value of rewards from B particles. The
policy based on Thompson sampling selects an arm
n(t) based on the following equation,

n(t) = arg max
n

(r̄m,n), (24)

where r̄m,n denotes the average reward, i.e.,

r̄m,n =
1

B

B∑
i=1

p(i)ᵀ
m q(i)

n .

Moreover, UCB policy selects an arm based on
the upper bound of the predicted reward. Assuming
that r(i)m,t ∼ N (p

(i)ᵀ
m q

(i)
n , σ(i)2), the UCB-based policy

is developed by the mean and variance of predicted
reward, i.e.,

n(t) = arg max
n

(r̄m,n + γ
√
ν), (25)

where γ ≥ 0 is a predefined threshold and the
variance is expressed as ν = 1

B

∑B
i σ

(i)2.

4.5 Algorithm
Putting all the aforementioned inference together,
an algorithm for ICTR model is provided below.

Online inference for ICF problem starts with
MAIN procedure presented in Algorithm 1. As user
m arrives at time t, EVAL procedure computes
a score for each arm, where we define the score
as the average reward. The arm with the highest
score is selected to pull. After receiving a reward
by pulling an arm, the new feedback is used to
update ICTR model by UPDATE procedure. Espe-
cially in UPDATE procedure, we use the resample-
propagate strategy in particle learning [11] rather
than the propagate-resample strategy in particle fil-
tering [14]. With the resample-propagate strategy,
particles are re-sampled by taking ρ(i) as the ith

particle’s weight, where the ρ(i) indicates the fitness
of the observation at time t given the particle at time
t−1. The resample-propagate strategy is considered
as an optimal and fully adapted strategy avoiding
an importance sampling step.

In addition, existing algorithms [21], [47] con-
sider all the arms independently, while our model
takes the clusters of arms into account by learning
the topic-related random variables (e.g., Φk), which
are shared among all the arms.

5 EMPIRICAL STUDY

To demonstrate the efficiency of our proposed al-
gorithm, we conduct our experimental study over
two popular real-world dataset: Yahoo! Today News
and MovieLens (10M). First, we outline the general
implementation of the baselines. Second, we start
with a brief description of the datasets and evalua-
tion method. Finally, we show and discuss the com-
parative experimental results of both the proposed
algorithms and the baselines, and a case study

9

Algorithm 1 The algorithm for ICTR model
1: procedure MAIN(B) . main entry
2: Initialize B particles, i.e., P(1)

m,n(0)
...P(B)

m,n(0)
.

3: for t← 1, T do
4: User m arrives for item recommendation.
5: n(t) = argmaxn=1,N EVAL(m,n) . by Equation (24) or

Equation (25).
6: Receive rm,t by rating item n(t).
7: UPDATE(m, n(t), rm,t).
8: end for
9: end procedure

10: procedure EVAL(m, n). get a rating score for item n, given user m.
11: for i← 1, B do . Iterate on each particle.
12: Get the user latent vector p

(i)
m .

13: Get the item latent vector q
(i)
n .

14: Predict ith reward r(i)m,t.
15: end for
16: Compute the average reward as the final reward rm,t.
17: return the score.
18: end procedure

19: procedure UPDATE(m, n(t), rm,t) . update the inference.
20: for i← 1, B do . Compute weights for each particle.
21: Compute weight ρ(i) of particle P(i)

m,n(t)
by Equation (17).

22: end for
23: Re-sample P ′

m,n(t) from Pm,n(t) according to the weights
ρ(i)s.

24: for i← 1, B do . Update statistics for each particle.
25: Update the sufficient statistics for zm,t by Equation (21).
26: Sample zm,t according to Equation (20).
27: Update the statistics for qn, σ2

n, pm, Φk by Equation (22).
28: Sample qn, σ2

n, pm, Φk by Equation (23).
29: end for
30: end procedure

on movie topic distribution analysis of MovieLens
(10M). Methods in [18], [40], [44], [48] are excluded
from the baselines since our work is orthogonal to
those methods.

5.1 Baseline Algorithms
In the experiment, we demonstrate the performance
of our methods by comparing them with the follow-
ing baseline algorithms:

1) Random: it randomly selects an item recom-
mending to the target user.

2) ε-greedy(ε): it randomly selects an item with
probability ε and selects the item of the largest
predicted reward with probability 1− ε, where
ε is a predefined parameter.

3) UCB(λ): it picks the item j(t) with the highest
rewards at time t as follows:

j(t) = arg max
j=1,...,N

(µ̂i + λ

√
2ln(t)

ni(t)
)

where ni(t) is the number of times that item ni
has been recommended until time t.

4) TS(Si(t), Fi(t)): Thompson sampling described
in Section 3.1, randomly draws the expected
reward from the Beta posterior distribution,

and selects the item with the largest predicted
reward. Si(t)/Fi(t) is the number of posi-
tive/negative feedback on item i until time t.

5) PTS(d, p): particle Thompson sampling for ma-
trix factorization approximates the posterior of
latent feature vectors by updating a set of par-
ticles. Here d is the dimension of latent feature
vector and p is the number of particles.

Our methods proposed in this paper include:
1) ICTRTS(d, p): it denotes our proposed interac-

tive collaborative topic regression model with
TS. Here d is the dimension of latent feature
vector and p is the number of particles.

2) ICTRUCB(d, p, γ): it indicates our proposed
model with UCB. Similar to UCB, γ is given.
Here d is the dimension of latent feature vector
and p represents the number of particles.

All algorithms are implemented using Java 1.8.
All empirical experiments are running on Linux
2.6.32. The server is equipped with Intel(R) Xeon(R)
CPU with 24 cores runing at speed of 2.50GHZ. The
total volume of memory is 158GB.

5.2 Datasets Description
We use two real-world datasets shown in Table 2 to
evaluate our proposed algorithms.

TABLE 2: Description of Datasets.

Dataset Yahoo News MovieLens (10M)
#users 226,710 71,567
#items 652 10,681
#ratings 280,410,150 10,000,054

Yahoo! Today News: The core task of person-
alized news recommendation is to display appro-
priate news articles on the web page for users. The
system often takes the user’s instant feedback into
account to improve the prediction of his/her pref-
erences, where the user feedback is about whether
he/she clicks the recommended article or not. Here,
we formulate the personalized news recommen-
dation problem as an instance of bandit problem,
where each arm corresponds to a news article.
The experimental dataset is a collection based on
a sample of anonymized user interaction on the
news feeds published by Yahoo! Research Lab1. The
dataset contains 15 days’ visit events of user-news
item interaction data by randomly selecting news
articles for recommendation. Besides, user’s infor-
mation (e.g., demographic information) is provided
for each visit event and represented as the user

1. http://webscope.sandbox.yahoo.com/catalog.php

10

identification, where users with the same informa-
tion are identified as one user. In our experiments,
the visit events of the first day are utilized for
selecting proper parameters of ICTR model, while
two million of the remaining are for the evaluation.
Each interactive record in the historical logs consists
of user ID, news article ID, rating feedback and a
timestamp.

MovieLens (10M): Online movie recommender
service aims to maximize the customer’s satisfaction
by recommending the proper movies to the target
users according to their preferences. Specifically,
several movies are selected out of a movie set and
displayed to users, and then users’ feedback on
displayed movies are collected for improving the
user satisfaction. Thereby, the problem of movie
recommendation can be formulated as a bandit
problem where an arm is a movie, a pull is regarded
as a movie selection, and the reward is indicated by
the user’s rating on the recommended movie. In our
experiments, each rating associates user ID, movie
ID, and a timestamp. In order to use the replayer
evaluation method, we assume that the rating data
is produced by the users when the movies are
randomly recommended. The rating score in the
dataset ranges from 1 to 5. Additionally, we choose
the top-N (N=100) popular movies to form a movie
set, from which one movie is recommended to a
user by algorithms in every trial.

5.3 Evaluation Method and Metrics
The evaluation methods for traditional non-
interactive recommender systems assume the inde-
pendence among the items at different time stamps
once the offline model is built. In an online interac-
tive recommender system, the recommended items
at previous time stamps are used to update the
recommendation model, and then further affect the
recommendation items at current time stamp.

We apply the replayer method to evaluate our
proposed algorithms on the aforementioned two
datasets. The replayer method, first introduced in
[23], provides an unbiased offline evaluation for
multi-armed bandit algorithms via historical logs,
where the logs are assumed to be generated by
random recommendation. The main idea of replayer
is to replay each user visit in the historical logs
to the algorithm under evaluation. If the recom-
mended item by the testing algorithm is identical to
the one in the historical log, this visit is considered
as a match between the historical recommendation
and the testing recommendation algorithm. The re-
player method only counts those matched visits in

for the accumulated reward computation. Since the
recommendation algorithms may result in different
numbers of matched visits, the average reward (i.e.,
the accumulated rewards divided by the number of
matched visits) is adopted for evaluation.

Particularly, in the scenario of news article rec-
ommendation, a matched visit corresponds to an
impression, and a reward of one is obtained by
a click, so the average reward also represents the
average CTR (Click Through Rate). In the scenario
of movie recommendation, we set the reward of
one if the rating score of the recommended movie
is no less than four, indicating that the user likes
the recommended movie. If the rating is less than
four, a reward value of zero is obtained. Thus, the
average reward in this scenario indicates the success
rate of movie recommendation. To sum it up, in
our setting, the reward is one if the recommended
article (movie) is clicked (liked), otherwise it is zero.

TABLE 3: Evaluation Metric Computation for Replayer.

Item in Random Recommendation Logs
Clicked/Liked Not Clicked/Not Liked

Recommended
Item

Matched TP FP
Not Matched N/A N/A

Consider a matched visit shown in Table 3. If
the item in the logs is clicked or liked by a user,
the recommended item is referred to as a true
positive (TP), otherwise it is referred to as a false
positive (FP). The average reward is computed as
TP∗1+FP∗0
TP+FP = TP

TP+FP , corresponding to the for-
mula for the precision for matched visits. However,
for the unmatched visits, we can not determine
whether an item is false negative or true negative
since no ground truth is provided. Therefore, the
computation of the average reward in this case
as the recall, relying on the false negative, is not
feasible.

5.4 Recommendation Evaluation

In this section we first conduct the replayer eval-
uation method for each algorithm with different
parameter settings. The aforementioned average
reward is used as the performance metric in the
experiments.

All baseline algorithms are configured with dif-
ferent parameter settings provided in Table 4. The
settings of all algorithms with the highest aver-
age reward are highlighted in bold. Our algo-
rithm ICTRUCB(2,10,0.1) achieves the best per-
formance among all algorithms on Yahoo! Today
News, and the performance comparisons among

11

different algorithms along different time buckets
are illustrated in Figure 2. For MovieLens (10M),
ICTRTS(3,10) outperforms all others and the cor-
responding performance comparisons are shown in
Figure 3.

Our proposed algorithms outperform the base-
line algorithms using independent arms because
ICTR model can leverage the dependencies among
items by clustering items (arms) using items’ latent
aspects. The feedback received after recommending
an item is not only used to update the model param-
eters related to this item, but also utilized to refine
the parameters for the item’s cluster. As a result,
the updated cluster parameters further influence
the model’s parameter inference for other items
within the same cluster. The effect of the clustering
is illustrated in more details in the next section.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Bucket Index

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

C
T
R

Average CTR on different bucket (bucket size = 100,000 user visits)

ǫ-greedy(0.1)

UCB(0.1)

TS(0.1,0.1)

PTS(2,2)

ICTRTS(5,10)

ICTRUCB(2,10,1.0)

random

Fig. 2: The average CTR of Yahoo! Today News data is
given along each time bucket. All algorithms shown here
are configured with their best parameter settings.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Bucket Index

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
a
ti
n
g

Average rating on different bucket (bucket size=100,000 user visits, N=100)

ǫ-greedy(0.1)

TS(0.01,0.01)

UCB(0.1)

PTS(2,2)

ICTRTS(3,10)

ICTRUCB(2,10,0.1)

random

Fig. 3: The average rating of MovieLens (10M) data is
given along each time bucket. All algorithms shown here
are configured with their best parameter settings.

5.5 A Case Study: Topic Distribution Analysis
on MovieLens (10M)

We conduct an experiment to demonstrate that our
model can effectively capture the dependency be-
tween items, i.e., finding the latent topics among
movies and clustering similar movies together. In
this experiment, top-N (N=8) popular movies are
selected and topic number (K=2) is set for our
model. After millions of training iterations, the
learned latent movie feature vectors will represent
each movie’s topic distribution over the two latent
topics, in which the i-th dimension of the feature
vector encodes the probability that the movie be-
longs to the i-th movie topic cluster. We separately
choose four movies with the highest value of the
first element and the second element of these la-
tent feature vectors, and list their IDs, names, and
movie types in Table 5, which clearly proves our
assumption that the model is able to capture the de-
pendency between items and cluster similar movies
together.

5.6 Time Cost

The cumulative time cost of each algorithm on both
datasets is presented in Figure 4a and Figure 4b,
where all algorithms are configured with their best
parameter settings. Our proposed algorithms have
higher running time since they needs to learn
the latent features for arms. However, the compu-
tational complexity of both ICTRUCB(1,1,1.0)
and ICTRTS(1,1) is comparable to the baselines’.
We also evaluate the time costs of ICTRTS and
ICTRUCB with different number of particles and
latent feature vector dimensions on the two datasets
(see Figure 4c and Figure 4d). It shows that the time
cost grows linearly with the number of particles and
dimensions of latent feature vector.

The observations can be summarized as follows:
(1) MovieLens (10M) requires much more time than
Yahoo! Today New due to a larger amount of items
and users. (2) In general, UCB-based algorithms
(e.g., ICTRUCB, UCB) are faster than TS-based ones
(e.g., ICTRTS, PTS) since the TS-based algorithms
highly depend on the sampling process.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose an interactive collabo-
rative topic regression model that adopts a gen-
erative process based on topic model to explicitly
formulate the arm dependencies as the clusters on
arms, where dependent arms are assumed to be

12

TABLE 4: Average CTR/Rating on two real world datasets

Algorithm Yahoo! Today News MovieLens (10M)

mean std min max mean std min max

ε-greedy(0.01) 0.06916 0.00312 0.06476 0.07166 0.70205 0.06340 0.60752 0.78934
ε-greedy(0.1) 0.07566 0.00079 0.07509 0.07678 0.82038 0.01437 0.79435 0.83551
ε-greedy(0.3) 0.07006 0.00261 0.06776 0.07372 0.80447 0.01516 0.77982 0.82458
ε-greedy(1.0) 0.03913 0.00051 0.03842 0.03961 0.60337 0.00380 0.59854 0.60823

UCB(0.01) 0.05240 0.00942 0.04146 0.06975 0.62133 0.10001 0.45296 0.73369
UCB(0.1) 0.08515 0.00021 0.08478 0.08544 0.73537 0.07110 0.66198 0.85632
UCB(0.5) 0.05815 0.00059 0.05710 0.05893 0.71478 0.00294 0.63623 0.64298
UCB(1.0) 0.04895 0.00036 0.04831 0.04932 0.63909 0.00278 0.60324 0.61296

TS(0.01,0.01) 0.07853 0.00058 0.07759 0.07921 0.83585 0.00397 0.82927 0.84177
TS(0.1,0.1) 0.07941 0.00040 0.07869 0.07988 0.83267 0.00625 0.82242 0.84001
TS(0.5,0.5) 0.07914 0.00106 0.07747 0.08041 0.82988 0.00833 0.81887 0.84114
TS(1.0,1.0) 0.07937 0.00079 0.07788 0.08044 0.83493 0.00798 0.82383 0.84477

PTS(2,2) 0.06069 0.00575 0.05075 0.06470 0.70484 0.03062 0.64792 0.74610
PTS(2,10) 0.05699 0.00410 0.05130 0.06208 0.65046 0.01124 0.63586 0.66977
PTS(5,10) 0.05778 0.00275 0.05589 0.06251 0.63777 0.00811 0.62971 0.65181
PTS(5,20) 0.05726 0.00438 0.05096 0.06321 0.62289 0.00714 0.61250 0.63567
PTS(10,20) 0.05490 0.00271 0.05179 0.05839 0.61819 0.01044 0.60662 0.63818

ICTRTS(2,5) 0.06888 0.00483 0.06369 0.07671 0.70386 0.15772 0.48652 0.85596
ICTRTS(2,10) 0.06712 0.01873 0.03731 0.08487 0.56643 0.10242 0.42974 0.67630
ICTRTS(3,10) 0.06953 0.00783 0.05857 0.07804 0.88512 0.00052 0.88438 0.88553
ICTRTS(5,10) 0.08321 0.08236 0.08492 0.06292 0.55748 0.14168 0.38715 0.73404
ICTRTS(7,10) 0.05066 0.00885 0.04229 0.06423 0.517826 0.07120 0.42297 0.59454
ICTRTS(7,20) 0.04925 0.00223 0.04672 0.05285 0.61414 0.12186 0.44685 0.73365

ICTRUCB(2,10,0.01) 0.06673 0.01233 0.04588 0.08112 0.44650 0.06689 0.38678 0.53991
ICTRUCB(2,10,1.0) 0.08597 0.00056 0.08521 0.08675 0.86411 0.01528 0.85059 0.88547
ICTRUCB(3,10,0.05) 0.07250 0.00426 0.06799 0.07694 0.54757 0.13265 0.43665 0.73407
ICTRUCB(3,10,1.0) 0.08196 0.00296 0.07766 0.08530 0.57805 0.08716 0.46453 0.67641
ICTRUCB(5,10,0.01) 0.07009 0.00722 0.06411 0.08244 0.62282 0.02572 0.59322 0.65594
ICTRUCB(5,10,1.0) 0.08329 0.00140 0.08098 0.08481 0.80038 0.24095 0.9625 0.88554

TABLE 5: Movie Topic Distribution of MovieLen (10M)
Topic Cluster I Topic Cluster II

MovieId MovieName MovieType MovieId MovieName MovieType

32 12 Monkeys Sci-Fi,Thriller 344 Pet Detective Comedy

50 Usual Suspects Crime,Mystery,Thriller 588 Aladdin Children,Animation,Comedy

590 Dances with wolves Adventure,Drama,Western 595 Beauty and the Beast Animation,Children,Musical

592 Batman Action,Crime,Sci-Fi,Thriller 2857 Yellow Submarine Adventure,Animation,Comedy,Musical

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Bucket Index

0

50000

100000

150000

200000

250000

C
u
m
u
la
ti
v
e
 T
im
e
 C
o
st
 (
M
ill
is
e
co
n
d
s)

Time Cost on different algorithms (total=1,900,000)

PTS(2,2)

ǫ-greedy(0.1)

UCB(0.1)

PTS(1,1)

ICTRUCB(1,1,1.0)

random

ICTRTS(5,10)

ICTRTS(1,1)

ICTRUCB(2,10,1.0)

TS(0.1,0.1)

(a) Cumulative time cost of
Yahoo! Today News is given
along each time bucket.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Bucket Index

0

50000

100000

150000

200000

250000

300000

350000

C
u
m
u
la
ti
v
e
 T
im
e
 C
o
st
 (
M
ill
is
e
co
n
d
s)

Time Cost on different algorithms (total=1,800,000, N=100)

PTS(2,2)

ICTRTS(3,10)

ǫ-greedy(0.1)

ICTRUCB(2,10,0.1)

UCB(0.1)

PTS(1,1)

ICTRUCB(1,1,0.1)

random

TS(0.01, 0.01)

ICTRTS(1,1)

(b) Cumulative time cost of
MovieLens (10M) is given
along each time bucket.

2 5 10 15 20 25 30
Number of Particles and Dimension=2

0

5000

10000

15000

20000

25000

M
ill

is
e

co
n

d
s

p
e

r
re

co
m

m
e

n
d

Milliseconds/recommend on different particle number
 (total=100,000, γ=1. 0, N=30)

MovieLen (10M) ICTRTS

MovieLen (10M) ICTRUCB

Yahoo! News ICTRUCB

Yahoo! News ICTRTS

(c) Time cost are given with
different number of parti-
cles.

2 5 10 15 20 25 30
Number of Dimension and Particle=10

5000

10000

15000

20000

25000

30000

35000

M
ill

is
e

co
n

d
s

p
e

r
re

co
m

m
e

n
d

Milliseconds/recommend on different dimension number
 (total=100,000, γ=1. 0, N=30)

MovieLen (10M) ICTRTS

MovieLen (10M) ICTRUCB

Yahoo! News ICTRUCB

Yahoo! News ICTRTS

(d) Time cost are given with
different number of latent
feature vector dimensions.

Fig. 4: Time cost comparison on both two datasets.

generated from the same cluster. Every time an
arm is pulled, the feedback is not only used for
inferring the involved user and item latent vectors,
but also employed to update the latent parameters
with respect to the arm’s cluster. The latent cluster
parameters further help with the reward prediction
for other arms in the same cluster. We conduct

empirical studies on two real-world applications,
including movie and news recommendation, and
the experimental results demonstrate the effective-
ness of our proposed approach.

Individual preferences on news and movies
usually evolve over time. One possible research
direction is to extend our model considering the

13

time-varying property in user preferences for better
online personal recommendation [45]. In addition,
we would like to provide a comprehensive regret
analysis [17] of our model in the future work.

REFERENCES

[1] D. Agarwal, B.-C. Chen, and P. Elango. Explore/exploit
schemes for web content optimization. In Data Mining,
2009. ICDM’09. Ninth IEEE International Conference on,
pages 1–10. IEEE, 2009.

[2] S. Agrawal and N. Goyal. Thompson sampling for contex-
tual bandits with linear payoffs. In International Conference
on Machine Learning, pages 127–135, 2013.

[3] H. J. Ahn. A new similarity measure for collaborative
filtering to alleviate the new user cold-starting problem.
Information Sciences, 178(1):37–51, 2008.

[4] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire.
The nonstochastic multiarmed bandit problem. SIAM
journal on computing, 32(1):48–77, 2002.

[5] B. Awerbuch and R. Kleinberg. Online linear optimization
and adaptive routing. Journal of Computer and System
Sciences, 74(1):97–114, 2008.

[6] A. Barraza-Urbina. The exploration-exploitation trade-off
in interactive recommender systems. In Proceedings of the
Eleventh ACM Conference on Recommender Systems, pages
431–435. ACM, 2017.

[7] J. Bennett, S. Lanning, et al. The netflix prize. In Proceedings
of KDD cup and workshop, volume 2007, page 35. New York,
NY, USA, 2007.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of machine Learning research, 3(Jan):993–
1022, 2003.

[9] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski. A
contextual-bandit algorithm for mobile context-aware rec-
ommender system. In International Conference on Neural
Information Processing, pages 324–331. Springer, 2012.

[10] K. Buza and L. Peska. Aladin: A new approach for drug–
target interaction prediction. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases,
pages 322–337. Springer, 2017.

[11] C. Carvalho, M. S. Johannes, H. F. Lopes, and N. Pol-
son. Particle learning and smoothing. Statistical Science,
25(1):88–106, 2010.

[12] S. Chang, J. Zhou, P. Chubak, J. Hu, and T. S. Huang. A
space alignment method for cold-start tv show recommen-
dations. In Proceedings of the 24th International Conference on
Artificial Intelligence, pages 3373–3379. AAAI Press, 2015.

[13] O. Chapelle and L. Li. An empirical evaluation of thomp-
son sampling. In Advances in neural information processing
systems, pages 2249–2257, 2011.

[14] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai,
M. F. Bugallo, and J. Miguez. Particle filtering. Signal
Processing Magazine, IEEE, 20(5):19–38, 2003.

[15] A. Doucet, N. De Freitas, and N. Gordon. An introduction
to sequential monte carlo methods. In Sequential Monte
Carlo methods in practice, pages 3–14. Springer, 2001.

[16] A. Doucet, S. Godsill, and C. Andrieu. On sequential
monte carlo sampling methods for bayesian filtering.
Statistics and computing, 10(3):197–208, 2000.

[17] C. Gentile, S. Li, P. Kar, A. Karatzoglou, G. Zappella, and
E. Etrue. On context-dependent clustering of bandits. In
International Conference on Machine Learning, pages 1253–
1262, 2017.

[18] C. Gentile, S. Li, and G. Zappella. Online clustering of
bandits. In Proceedings of the 31st International Conference
on Machine Learning (ICML-14), pages 757–765, 2014.

[19] J. H. Halton. Sequential monte carlo. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, volume 58,
pages 57–78. Cambridge Univ Press, 1962.

[20] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl.
An algorithmic framework for performing collaborative
filtering. In Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in information
retrieval, pages 230–237. ACM, 1999.

[21] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and
S. Chawla. Efficient thompson sampling for online matrix-
factorization recommendation. In Advances in Neural Infor-
mation Processing Systems, pages 1297–1305, 2015.

[22] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8),
2009.

[23] L. Li, W. Chu, J. Langford, T. Moon, and X. Wang. An un-
biased offline evaluation of contextual bandit algorithms
with generalized linear models. JMLR, 26:19–36, 2012.

[24] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. ACM, 2010.

[25] D. K. Mahajan, R. Rastogi, C. Tiwari, and A. Mitra.
Logucb: an explore-exploit algorithm for comments rec-
ommendation. In Proceedings of the 21st ACM international
conference on Information and knowledge management, pages
6–15. ACM, 2012.

[26] S. Pandey, D. Chakrabarti, and D. Agarwal. Multi-armed
bandit problems with dependent arms. In Proceedings of
the 24th international conference on Machine learning, pages
721–728. ACM, 2007.

[27] S. Pandey and C. Olston. Handling advertisements of un-
known quality in search advertising. In Advances in neural
information processing systems, pages 1065–1072, 2007.

[28] L. Peska, K. Buza, and J. Koller. Drug-target interaction
prediction: A bayesian ranking approach. Computer meth-
ods and programs in biomedicine, 152:15–21, 2017.

[29] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M.
McNee, J. A. Konstan, and J. Riedl. Getting to know you:
learning new user preferences in recommender systems.
In Proceedings of the 7th international conference on Intelligent
user interfaces, pages 127–134. ACM, 2002.

[30] A. M. Rashid, G. Karypis, and J. Riedl. Learning pref-
erences of new users in recommender systems: an infor-
mation theoretic approach. ACM SIGKDD Explorations
Newsletter, 10(2):90–100, 2008.

[31] R. Salakhutdinov and A. Mnih. Probabilistic matrix fac-
torization. In Nips, volume 1, pages 2–1, 2007.

[32] R. Salakhutdinov and A. Mnih. Bayesian probabilistic
matrix factorization using markov chain monte carlo. In
Proceedings of the 25th international conference on Machine
learning, pages 880–887. ACM, 2008.

[33] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-
based collaborative filtering recommendation algorithms.
In Proceedings of the 10th international conference on World
Wide Web, pages 285–295. ACM, 2001.

[34] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. Col-
laborative filtering recommender systems. In The adaptive
web, pages 291–324. Springer, 2007.

[35] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock.
Methods and metrics for cold-start recommendations. In
Proceedings of the 25th annual international ACM SIGIR con-

14

ference on Research and development in information retrieval,
pages 253–260. ACM, 2002.

[36] A. Smith, A. Doucet, N. de Freitas, and N. Gordon. Se-
quential Monte Carlo methods in practice. Springer Science &
Business Media, 2013.

[37] L. Song, C. Tekin, and M. van der Schaar. Online learning
in large-scale contextual recommender systems. IEEE
Transactions on Services Computing, 9(3):433–445, 2016.

[38] M. Tokic. Adaptive ε-greedy exploration in reinforcement
learning based on value differences. In KI 2010: Advances
in Artificial Intelligence, pages 203–210. Springer, 2010.

[39] H. Wang, Q. Wu, and H. Wang. Learning hidden features
for contextual bandits. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge
Management, pages 1633–1642. ACM, 2016.

[40] H. Wang, Q. Wu, and H. Wang. Factorization bandits for
interactive recommendation. In AAAI, pages 2695–2702,
2017.

[41] Q. Wang, T. Li, S. Iyengar, L. Shwartz, and G. Y. Grabarnik.
Online it ticket automation recommendation using hierar-
chical multi-armed bandit algorithms. In Proceedings of the
2018 SIAM International Conference on Data Mining, pages
657–665. SIAM, 2018.

[42] X. Wang, S. C. Hoi, C. Liu, and M. Ester. Interactive
social recommendation. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, pages
357–366. ACM, 2017.

[43] L. Wu, C.-J. Hsieh, and J. Sharpnack. Large-scale collab-
orative ranking in near-linear time. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 515–524. ACM, 2017.

[44] Q. Wu, H. Wang, Q. Gu, and H. Wang. Contextual
bandits in a collaborative environment. In Proceedings of
the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, pages 529–538. ACM,
2016.

[45] C. Zeng, Q. Wang, S. Mokhtari, and T. Li. Online context-
aware recommendation with time varying multi-armed
bandit. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
pages 2025–2034. ACM, 2016.

[46] C. Zeng, Q. Wang, W. Wang, T. Li, and L. Shwartz. Online
inference for time-varying temporal dependency discov-
ery from time series. In Big Data (Big Data), 2016 IEEE
International Conference on, pages 1281–1290. IEEE, 2016.

[47] X. Zhao, W. Zhang, and J. Wang. Interactive collaborative
filtering. In Proceedings of the 22nd ACM international confer-
ence on Conference on information and knowledge management,
pages 1411–1420. ACM, 2013.

[48] L. Zhou and E. Brunskill. Latent contextual bandits and
their application to personalized recommendations for
new users. arXiv preprint arXiv:1604.06743, 2016.

Qing Wang is currently a Ph.D. student in
the School of Computer Science at Florida
International University. She received a
B.S. and M.S. degree in Computer Science
from Zhengzhou University and Xidian Uni-
versity in 2009 and 2013, respectively. Her
research interests include interactive rec-
ommender system, multi-armed bandit and
large scale data mining.

Chunqiu Zeng is currently a Ph.D. stu-
dent in the School of Computer Science
at Florida International University. He re-
ceived a B.S. and M.S. degree in Computer
Science from Sichuan University in 2006
and 2009, respectively. His research inter-
ests include event mining, system manage-
ment and large scale data mining.

Wubai Zhou is currently a Ph.D. student in
the School of Computer Science at Florida
International University. He received a B.S.
degree in Computer Science and Technol-
ogy from Wuhan University in 2012. His
research interests include system oriented
data mining, system management and ma-
chine learning.

Tao Li was an Eminent Scholar Profes-
sor in the School of Computer Science at
Florida International University deceased
in Dec. 2017. He received his Ph.D. in
Computer Science in 2004 from the Uni-
versity of Rochester. His research interests
lie in data mining and machine learning
studying both on the algorithmic and appli-
cation issues, computing system manage-

ment, and information retrieval. He is a recipient of the USA NSF
CAREER Award and multiple IBM Faculty Research Awards.

S. S. Iyengar currently is the Director and
Ryder Professor in the School of Com-
puter Science at Florida International Uni-
versity. He is a Member of the European
Academy of Sciences, a Fellow of the In-
stitute of Electrical and Electronics Engi-
neers (IEEE), a Fellow of the Association
of Computing Machinery (ACM), a Fellow
of the American Association for the Ad-

vancement of Science (AAAS), and Fellow of the Society for
Design and Process Science (SDPS). Dr. S. S. Iyengar is a
leading researcher in the fields of distributed sensor networks,
computational robotics, and oceanographic applications, and is
perhaps best known for introducing novel data structures and
algorithmic techniques for large-scale computations in sensor
technologies and image processing applications.

Larisa Shwartz (M’05) is currently a Re-
searcher at IBM T.J. Watson Research
Center, Yorktown Heights, NY, USA. She
received Ph.D. in mathematics from UNISA
University. Dr. Shwartz has research expe-
rience in mathematics and computer sci-
ence, now she is focusing on IT service
management technologies for service de-
livery. She has more than 55 publications

and 52 patents.

Genady Ya. Grabarnik currently teaches at Math and CS
Department, St John’s University. He is a trained mathemati-
cian and authored over 80 papers. He spent 10 years at
IBM T.J.Watson Research Center where his work was cele-
brated with a number of awards including Outstanding Technical
Achievement Award and Research Achievement Awards. He
is a prolific inventor with over 65 US patents. His interests
include research in functional analysis, inventions, and research
in computer science and artificial intelligence.

