
1

Data-Driven Techniques in Disaster Information Management

TAO LI, School of Computing and Information Sciences, Florida International University
and School of Computer Science, Nanjing University of Posts and Telecommunications
NING XIE, CHUNQIU ZENG, WUBAI ZHOU, LI ZHENG, YEXI JIANG, YIMIN YANG,
HSIN-YU HA, and WEI XUE, School of Computing and Information Sciences,
Florida International University
YUE HUANG, School of Computer Science, Nanjing University of Posts and Telecommunications
SHU-CHING CHEN, JAINENDRA NAVLAKHA, and S. S. IYENGAR, School of Computing and
Information Sciences, Florida International University

Improving disaster management and recovery techniques is one of national priorities given the huge toll
caused by man-made and nature calamities. Data-driven disaster management aims at applying advanced
data collection and analysis technologies to achieve more effective and responsive disaster management,
and has undergone considerable progress in the last decade. However, to the best of our knowledge, there is
currently no work that both summarizes recent progress and suggests future directions for this emerging re-
search area. To remedy this situation, we provide a systematic treatment of the recent developments in data-
driven disaster management. Specifically, we first present a general overview of the requirements and system
architectures of disaster management systems and then summarize state-of-the-art data-driven techniques
that have been applied on improving situation awareness as well as in addressing users’ information needs in
disaster management. We also discuss and categorize general data-mining and machine-learning techniques
in disaster management. Finally, we recommend several research directions for further investigations.
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1. INTRODUCTION

1.1. Background

Disasters are severe, large-scale, non-routine events that disrupt the normal func-
tioning of a community or a society, causing widespread and overwhelming losses
and impacts. From ancient times, natural disasters (such as earthquakes, hurricanes,
tsunamis, floods, tornadoes, and volcano eruptions) and man-made disasters (such as
environmental disasters, terrorist attacks, and wars) have caused innumerable loss of
lives, devastating destruction, and immeasurable economy losses. A disaster of mod-
erate scale can easily result in a loss of hundreds of millions of dollars [Zheng et al.
2013]. Merely counting what happened in the last decade, disasters have caused more
than $800 billion in losses. Table I lists the disasters that have happened since 2005
that caused over $10 billion of loss1. If the losses of all the less severe disasters are also
taken into account, the total amount would exceed 1 trillion dollars.

In fact, high cost is not the only devastating consequence of disasters: heavy causali-
ties, mass destruction of infrastructure, and other aftermath of disasters all cause long-
lasting adverse consequences in the affected regions. Take the Tohoku earthquake, for
example. This 9.0 magnitude earthquake led to 15,889 deaths, 6,152 injuries, and 2,601
people missing. As for the destruction of infrastructure, it caused 127,290 building col-
lapses, 272,788 buildings half collapsing, and another 747,989 buildings partially dam-
aged [Tohoku 2011]. In the week right after the earthquake, the associated tsunami fur-
ther triggered nuclear accidents that caused the evacuation of hundreds of thousands
of residents who lived within 20km radius of the Fukushima Daiichi Nuclear Power
Plant [CNN Wire Staff 2011; ABC News 2011]. As of this writing, the infrastructures of
the inflicted areas have not fully recovered yet. The facilities – such as water, electric-
ity, and gas supplies – were suspended for a long time in the affected areas. Compared
with the rebuilding progress of infrastructure and facilities, the recovery from mental
suffering for thousands of orphaned children will take much longer [Kyoto News 2012].

In addition to these direct losses, disasters are also fatal to the businesses in the
affected areas. According to a study by Contingency Planning and Management, over
40% of the companies that were forced to shut down for at least three days due to
a disaster would be unable to survive for more than 36 months. A key reason for
businesses failing after a disaster is the lack of information on the availability of
power and supplies as well as the lack of an effective and regularly tested disaster
responseplan [Conference Board 2006]. The economic deterioration caused by business
failures further impedes the recovery of the affected areas.

1.2. Disaster Management

Disaster management is the process of planning and taking actions to minimize the
social and physical impact of disasters and reduce the community’s vulnerability to the
consequences of disasters. Given the devastating losses caused by disasters every year,
effective disaster management has become a pressing issue for today’s world, especially
for disaster-prone countries such as China, Japan, and the United States [CERCS
2013].

Since disaster management is a multifaceted process, it is imperative to deploy proper
management that optimizes planning and responses. Due to the limitation of resources

1Source from Wikipedia http://en.wikipedia.org/wiki/List_of_disasters_by_cost.
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Table I. Major Disasters in the Past Decade and Their Loss Estimates

Year Name Loss (In US Dollars)

2014 Iquique earthquake $30,000,000,000
2011 Tohoku earthquake and tsunami Over $300,000,000,000
2011 Thailand Floods $45,700,000,000
2011 Christchurch earthquake $40,000,000,000
2010 Deepwater Horizon oil spill $60,000,000,000 to $100,000,000,000
2010 Haiti earthquake $14,000,000,000
2008 Sichuan earthquake $148,000,000,000
2008 Hurricane Ike $29,600,000,000
2005 Hurricane Katrina $108,000,000,000

during and after the disaster periods, collaborative efforts at the governmental, private,
and community levels are indispensable. Collaboration at each level requires a prompt,
coordinated, and organized effort to prepare for, respond to, mitigate against, and
recover from emergencies and their consequences.

Disaster management is usually a cyclic process that consists of the following four
main phases: (1) preparation – planing for various disasters that could strike within the
area; (2) response – issuing warnings prior to a disaster and conducting initial actions
during the disaster; (3) recovery – conducting actions to get the affected area and
community back into normalcy; and (4) mitigation – taking measures that minimize
the aftermath of a disaster and prevent the same damages from occurring again.
Usually, the end of one phase is also the beginning of the next, but sometimes phases
can overlap and several may take place simultaneously. Timely decision-making during
each phase results in better preparedness, earlier warnings, and reduced vulnerability.
The full disaster management cycle also includes the creation of effective plans and
public policies for addressing the causes of disasters and/or mitigating their impacts
on properties, people, and infrastructures.

1.3. Data-driven Disaster Management

Information exchange during and after the disaster periods can greatly reduce the
losses caused by the disaster. This is because it allows people to make better use of
the available resources, such as relief materials and medical supplies, and provides a
channel through which reports on casualties and losses in each affected area can be
delivered expeditiously. Data-driven disaster management refers to applying advanced
data collection and analysis technologies to achieve more effective and responsive
disaster management [Schmitt et al. 2007].

1.3.1. Data Sources for Data-Driven Disaster Management. Data useful for disaster man-
agement are highly diverse in nature, reflecting the diverse information and commu-
nication requirements at different times and locations with respect to disaster man-
agement. The data sources for data-driven disaster management can be classified
roughly into two different types according to their temporal characteristics: dynamic
data sources and static data sources. Common dynamic data sources include (a) peri-
odically updated situation reports from the Office of Emergency Management (OEM)
in each state and the participating companies that summarize the current status of
threats, ongoing disaster relief operations, and the objectives of preparation and re-
covery efforts; (b) damage analysis reports and images from EOC and participating
companies; (c) open/closed status of roadways/highways/bridges, schools, hospitals and
businesses, as well as on/off status of other infrastructures (e.g., power, fuel, police
stations, fire stations, and other emergency service); (d) news reports from various
agencies; (e) mailing lists, direct emails, press releases, web pages, news feeds, and
conference calls; (f) logs of 311 calls that report damages or status of various facilities;
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and (g) data from social network sites like blogs, Facebook, and Twitter. Common static
data sources include (a) historical data from the OEM at the federal and state levels;
(b) incident action plans that illustrate the impending threat along with guidelines
and plan of actions for preparing against the threat and recovery operations after the
threat has elapsed; (c) properties and business locations; (d) public geospatial datasets;
(e) public map services such as Google Maps and Microsoft Maps; and (f) road networks.

In general, there are four types of resource providers: local jurisdiction, media, non-
governmental organizations (NGOs), and private sectors. Within each resource type,
data are further divided into several levels of administrative division or different cat-
egories based on the type of business that generated the data.

1.3.2. The Scope of This Article. Data-driven disaster management is an emerging re-
search area that has undergone considerable progress during the past decade. Its
main advantage over traditional disaster management is that it interconnects differ-
ent partners and entities in the system, allowing users to find valuable information
that makes them aware of the current disaster situation and recovery status. More-
over, the community participants (the disaster management officials, utility agents,
industry representatives, and so on) can collaborate to exchange critical information,
evaluate the damage, and make practical recovery plans. Governments are adopting
data-driven approaches to organize their disaster management assets and human in-
frastructures [FEMA 2009; Howitt et al. 2010; Saleem et al. 2008; Song et al. 2013]. For
example, the Division of Emergency Management at the State of Florida has created
a web-based platform to facilitate logistic and relief missions in the disaster-affected
areas [Zheng et al. 2010]. Based on the user motion data of 1.6 million people during
the Great East Japan Earthquake and the Fukushima Daiichi nuclear accident, a re-
search team at the University of Tokyo has been collaborating with the government
and industry partners [Song et al. 2013, 2014a]. They developed intelligent systems
that automatically discover, analyze, and simulate population evacuation, and model
human emergency mobility.

However, to the best of our knowledge, there is no work on data-driven disaster man-
agement that both summarizes recent progress and suggests future research direc-
tions. Our previous article [Hristidis et al. 2010], which summarizes existing research
progress on data-driven disaster management from the perspective of data manage-
ment, probably comes the closest to meeting these requirements. Unfortunately, some
important aspects of disaster management research, such as data processing and pre-
dictive analysis, are left out in that work. To remedy this situation, the current article
aims to provide a more comprehensive overview of the recent developments in data-
driven disaster management and highlight the most important research challenges
in the field. In particular, we will focus on the following key problems in designing a
disaster management plan, which are crucial in achieving better information sharing
and delivery:

Problem 1: How to effectively capture the status information and improve situational
awareness from diverse information sources? During and after disasters, affected enti-
ties need to communicate/submit/share status reports using many sources. It is often
desirable to deliver such status information as soon as it becomes available. In addi-
tion, some reports on a particular vicinity may be redundant. It is thus important to
present a situation overview to users who desire concise and simple reports that are
compiled from diverse information sources.

Problem 2: How to effectively capture users’ interests and deliver the relevant infor-
mation to them? Historical data and real-time data during disasters are collected from
diverse sources, and they may belong to various categories. During disaster prepara-
tion and recovery stages, users usually cannot afford the time to go through the entire
system to find needed information.
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Fig. 1. Overview of this survey. Fig. 2. Incident/disaster information and action
flow.

Problem 3: How to leverage the community information from disaster recovery? Par-
ticipating entities generally play different roles within various communities: they can
locate in the same physical community or be members of the same retail chain. Iden-
tifying the interaction patterns among various communities during a disaster is quite
important, since they often reveal information that is valuable in a recovery scenario.

In this article, we discuss several important aspects of the recent research on data-
driven disaster management. We categorize and discuss preliminary studies that ad-
dress these challenges. For Problem 1, we introduce the effective methods that help
users understand the situation reports and improve situation awareness; for Problem 2,
we present the intelligent information delivery techniques for effectively supporting
users’ information needs; and for Problem 3, we discuss how the techniques developed
in data mining and machine learning are leveraged to improve the effectiveness of the
disaster management systems.

1.4. Roadmap

The rest of this article is organized as follows (see also Figure 1). Section 2 contains an
overview of existing research efforts on data-driven disaster management systems. In
Section 3, we describe the techniques used to improve situation awareness. Section 4 in-
troduces the techniques that address users’ information needs in disaster management
situations, and Section 5 provides a detailed discussion on the general data-mining and
machine-learning techniques that have been applied in disaster management. Finally,
we conclude with future research directions in Section 6.

2. DISASTER MANAGEMENT SYSTEMS

2.1. General Requirements

To best serve the purpose of saving lives and properties, a disaster management system
must ensure timely interaction and coordination between disaster response mechanism
and recovery efforts. Figure 2 illustrates a typical information and action flow triggered
by a disaster. First, some witnesses immediately make 911 calls to inform the command
centers of the emergency situation; some witnesses may post the emergency situation
to social media, such as Twitter and Facebook. The emergency situation can also be
detected automatically by on-site monitoring devices, such as fire alarm sensors. Then,
as soon as the situation information is forwarded to the United Command Center
(UCC), the rescue plan and decision are made immediately. Based on the severity
of the incident and the resource capacity of each department – such as the police
department, military, and fire department – the UCC gives administrative directions to
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the corresponding departments, who finally proceed to perform their tasks to mitigate
the situation.

The main functionality of a disaster management system is to manage and analyze
disaster information in order to provide evidence for decision making by the UCC as
well as to facilitate the coordination of the resource needed by all departments involved.
In Kim et al. [2007], the following general requirements for an efficient and effective
Critical Incident Management System are identified.

—Communication capacity. Usually, a flood of phone calls are made to the first-
responders and emergency agencies when an emergency occurs. At the same time,
a surge of messages related to the emergency situation may be posted on many
social media websites. These phone calls and messages are extremely important
for mitigating the incident and rescuing the people in emergencies. Consequently,
communication channels of a disaster system should provide sufficient load capacity
to transmit information between the public and emergency response systems.

—Early detection and immediate response. Immediate response to an emergency
is critical in reducing casualty and property damage. Early detection is crucial in
identification and characterization of the disaster, evaluation, and dissemination of
possible damages caused by the coming incident. Quick response to the emergency
situation reduces the cost of damages by providing instant evidence for the command
center to make an accurate decision in a timely fashion.

—Effective information management. As the main objective of disaster manage-
ment is to form a solid basis for decision-making during emergency situations,
it should competently collect,integrate, organize, analyze, and share information
throughout all phases of a disaster.

—Resource allocation. Under emergency situations, reasonable resource allocation
helps to minimize the physical and social impacts caused by the incident given
limited resources for rescue and mitigation.

—Security and privacy. To carry out disaster prevention and recovery plan effec-
tively, it is important to guarantee the security of disaster data, especially in a man-
made disaster, such as a terrorist attack. In addition, the privacy issue has gained
more attention recently. A disaster management system should install proper autho-
rization access policies to keep private information from leaking to the public domain
for misuse.

2.1.1. Information Processing Requirements. With respect to information processing, a
disaster management system must deal with the following three challenging tasks:
(1) how to efficiently collect and integrate disaster data from heterogeneous data
sources, (2) how to search and identify disaster-related information to meet the users’
needs, and (3) how to extract interesting patterns and trends from historical data. To a
large extent, timely, accurate, and effective decision-making based on available disaster
information depends on addressing these issues. Some well-studied information tech-
nologies, such as Information Extraction (IE), Information Retrieval (IR), Information
Filtering (IF), and Data Mining (DM) have been applied in the disaster domain in Hris-
tidis et al. [2010]. These information technologies form the essential building blocks in
a disaster management system, as illustrated in Figure 3.

—Information Extraction. The disaster information is extracted from heterogeneous
sources such as social media and monitoring devices. Typically, the disaster informa-
tion from different sources varies greatly in structure or format. To support further
analysis and processing, a common format is specified for disaster information inte-
gration. Then, the integrated disaster information in this format is organized and
stored for further processing.

ACM Computing Surveys, Vol. 50, No. 1, Article 1, Publication date: March 2017.
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Fig. 3. Information technologies are applied in
the disaster domain.

Fig. 4. The system architecture of WebEOC
[Intermedix 2013].

—Information Retrieval. Disaster information relevant to the users’ needs should
be efficiently retrievable through queries to the disaster management system.

—Information Filtering. If all the disaster information were presented to the users,
it would cause an overwhelming workload. Instead, the disaster information should
be filtered based on the specific purposes of the users.

—Data Mining. It is very important to apply data-mining techniques to analyze the
current and historical data in search of interesting patterns and trends, which form
an indispensable basis for decision making.

2.1.2. System Evaluation. The criteria for evaluating a disaster information manage-
ment system mainly concern the abilities of the system to (1) correctly differentiate
the response from the agent-generated demands; (2) adequately carry out generic
functions; (3) efficiently mobilize resources and personnel; (4) make an appropriate
delegation of tasks and a division of labor; (5) process disaster-related information;
(6) exercise decision making; and (7) provide instant reports for the news media
[Quarantelli 1997]. Usually, a case study by users is used to measure these criteria.
Different kinds of disasters and emergencies are simulated, and the user experiences
with the disaster information system are recorded. The response from the users will
be used to evaluate whether the system adequately satisfies these criteria.

2.2. General Overview on Disaster System Architecture

Large-scale disaster management involves a diversity of organizations and produces a
great amount of heterogeneous data that are then consumed by these organizations.
An effective Information and Communication Technology (ICT) solution plays a key
role in effectively coordinating among these organizations, as it tracks the evolving sit-
uation and directs ongoing operations based on an overall awareness of developments.
Next, we illustrate the architecture of these systems by taking a close look at several
examples.

Sahana. Sahana [Careem et al. 2006], a free and open-source application, provides
a comprehensive solution for information management in relief operation recovery
and rehabilitation. A layered architecture of Sahana is depicted in Figure 5(a). The
architecture of Sahana consists of four layers. The Sahana Application Framework lies
at the core, surrounded by a set of libraries and Application Programming Interfaces
(APIs) such as Location, GIS, and Reporting APIs. The core modules are then built
on top of the Sahana Application Framework and libraries/APIs, with the optional
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Fig. 5. The system overview of Sahana [Careem et al. 2006].

peripheral modules lying at the outermost layer, and are installed upon users’ requests.
In general, outer layer modules are able to use the functionality of the inner ones.

The following features are provided in the Sahana framework: a flexible and modular
architecture that ensures that the systemwide tasks and events can be easily managed
and synchronized; security at the modular and framework level, internationalization
and localization of content; an easy way to set up and configure the Sahana and its
database; support for automatic detection and dynamic plug-in of new modules due
to its flexible architecture; capability to work with a common database to access its
schema and disaster data; and administration functionality for other modules in the
system.

The component-based architecture of a typical system built on the Sahana framework
is illustrated in Figure 5(b). Such a system is composed of an Operating System, above
which a Database and Web Server can be deployed to support the Sahana framework.
Sahana can take advantage of other third-party libraries, such as XAJAX, NuSoap, and
MapServer, to facilitate its operations and tackle more challenging tasks in disaster
management.

WebEOC. A crisis-disaster management system called WebEOC was developed to
manage large-scale events and disasters, support public safety information sharing,
and provide real-time situational awareness. The system is maintained by the Divi-
sion of Homeland Security and Emergency Management along with the State of New
Hampshire and Department of Safety. One primary objective of WebEOC is to pro-
vide incident commanders, community leaders, and command-level personnel with one
common operating picture of public safety operations, sensitive information, and in-
frastructure disruptions, upon which informed and effective decisions can be made on
recovery and mitigation efforts. WebEOC is also used as a gateway to share informa-
tion between the State Emergency Operations Centers (SEOC) and federal, state, and
local public safety entities and critical infrastructure patterns. Additionally, WebEOC
is one primary means of communications and incident management for the SEOC.

The system architecture of WebEOC is shown in Figure 4. The WebEOC system can
be divided into three tiers by the Internet boundaries. The leftmost tier is the user
layer, where users can access WebEOC by browser or service API. All business logic
are implemented on the web server in the middle tier. In the rightmost tier, both the
disaster information and GIS data are stored in the database. To avoid data loss due
to disaster, both the web and database server are backed up with replication servers.
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Fig. 6. The system Architecture of ADSB. Fig. 7. Business Continuity Information Network
(BCIN).

E-Team. E-Team, software offered by NC4 (National Center for Crisis and Continu-
ity Coordination), focuses on the capability of situational awareness [NC4 2011]. To
help emergency operation centers respond quickly and effectively to emergencies and
incidents, E-Team – combined with existing software from the SAP – provides a power-
ful intuitive solution for web-based incident management and reporting. E-Team helps
to leverage timely, trusted, high-quality data across the enterprise to enhance situa-
tional understanding and provides a common operating picture of the environment. It
enables cross-jurisdictional data sharing and provides user information access to all
operating units, regardless of the user’s location. E-Team dashboards allow the user to
tailor information displays to meet the specific user’s role in disaster management.

ADSB. In the past decade, mobile computing has reached the commercial industry
and mainstream consumers via smartphones and personal digital assistants (PDAs).
Mobile devices are particularly useful in disaster situations, as they suffer almost
no restrictions on time, location, or power supply. An All-Hazard Disaster Situation
Browser (ADSB) system, running on mobile devices, is proposed in Zheng et al. [2011].
The system architecture of the ADSB is illustrated in Figure 6.

In order to share disaster information effectively, the ADSB supports the following
functionalities: (1) provides users with a personalized list of reports that are the most
important ones with respect to the users; (2) presents a comprehensive view of each
individual report, in which all related information is displayed; (3) allows users to
obtain summarized information by keyword searches; (4) supports the Dynamic Query
Form, which allows a dynamic and heterogeneous query with desired attributes and
their annotation in different reports; and (5) provides instant disaster information
sharing through community management, which offers a channel for users to exchange
disaster-related information and monitor the evolving situation of a specific event.

BCIN. Researchers at Florida International University have been working in
collaboration with government and industry partners (such as the Miami-Dade and
Palm Beach Offices of Emergency Management, Wal-Mart, Home Depot, Verizon
Wireless, and many others) to develop a web-based service (i.e., a Business Continuity
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Information Network (BCIN)) available year-round through which emergency man-
agement offices, local businesses, and organizations can share critical information and
support efforts during all cycles of disaster management [Saleem et al. 2008; Hristidis
et al. 2010; Zheng et al. 2012, 2013]. The BCIN is a business-to-business community
network that allows members to track their key resources and locate required disaster
recovery supplies, equipment, and services. In particular, the system facilitates
professional organizations such as Chambers of Commerce to aid their members
on disaster relief and expedites government agencies to assess damage in order to
prioritize rescue efforts. The project website is at http://www.bizrecovery.org. Figure 7
is a snapshot of the current prototype, which displays information collected from
various sources in an intuitive and user-friendly manner. The top panel is the situation
dashboard, in which every row represents a jurisdiction and every column represents
a facility. A colored symbol represents the status of a facility in a jurisdiction. For
example, a green (resp., red) cycle indicates that the facility is open (resp., closed). The
bottom-left panels provide users with richer views (such as pictures, images, videos)
of the current threats and impacts, while the bottom-right panel shows a list of recent
reports submitted by authoritative and trusted users. Multiple filtering options are
provided that allow users to quickly extract valuable information from the system.

Other Systems. In addition to the disaster management systems outlined earlier,
there are many other notable systems designed for different purposes and satisfying
the needs of different type of users, for example, the RESCUE Disaster Portal [UCI
2015] and Puerto Rico Disaster Decision Support Tool [DDST 2015]. The National
Emergency Management Network (NEMN) [Kapucu et al. 2010] allows local govern-
ment to share disaster-related resources and information. These products are designed
for county emergency management and participating agencies to provide effective re-
ports sharing software systems. More recent systems include Ushahidi [2012] – which
provides a platform for crowdsourcing news stories and crisis information to generate
visualization and interactive maps, GeoVISTA [2010] – which monitors tweets to gen-
erate situation alerts using a map-based interface by making use of the geo-location
associated with the tweets, and DI-DAP [Li et al. 2016] – which supports effective
information delivery and analysis in diaster management.

Dealing with data unavailability issue. To handle data in the presence of unavail-
able sources and thus achieve high robustness and reliability, many techniques are
adopted in disaster information management. The Distributed Data System [Özsu and
Valduriez 2011] (DDS) is commonly adopted to prevent data loss and help data recov-
ery. It allows portions of the database to be stored on multiple computers located in
multiple physical locations within a network. Currently, with the rapid emergence of
cloud storage, the data from the primary site is now backed up in the cloud and/or in
multiple geographically separated data centers to improve fault tolerance and avail-
ability [Chidambaram et al. 2008]. Several cloud infrastructure and storage vendors,
such as Amazon S3, Glacier, and Rackspace, provide storage for backup services. Data
versioning arises as a another challenge for distributed collaboration systems or a
system requiring frequent backup, such as a disaster management system [Clark
et al. 2013]. Data versioning evolves from user-level source code/document control
and enterprise backup tools to a single-assignment file system and storage system
[Zhu 2003]. The Rapid Open Geospatial User-Driven Enterprise (ROGUE) Joint Ca-
pability Technology Demonstration (JCTD) [Clark et al. 2013] is committed to provid-
ing an innovative approach to geospatial data development, management, and shar-
ing that leverages institutional interactions and enables rich collaboration, especially
for disaster management institutions such as The Pacific Disaster Center and the
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Department of State-Humanitarian Information Unit. They developed a versioning sys-
tem, GeoGit, with the capability of allowing for distributed collaboration and versioning
of geographic data and not relying on network connectivity to be fully functional.

Table II summarizes the disaster information management systems discussed; in-
formation on more such systems can be found in EMSystems [2005]. Our discussion so
far indicates that disaster management systems have gone through several historical
stages in the past decade. During the first stage, a system acts only as a traditional
information management system that stores disaster information in a specific schema
to support efficient query processing. In the second stage, a growing amount of disaster
information from heterogeneous sources calls for more advanced techniques in informa-
tion collection, management, analysis, and discovery. These advanced techniques often
stem from state-of-the-art research results in areas such as information extraction,
information filtering, information retrieval, data mining, and distributed computing
platforms [Zeng et al. 2013]. In the third stage, with the surge of social media and
the prevalence of mobile devices, people are able to share disaster information with
little spatial or temporal constraint. As a result, disaster information management
systems are demanded to provide a comprehensive solution that integrates advanced
information techniques, social media, and mobile devices.

3. TECHNIQUES FOR IMPROVING SITUATION AWARENESS

Situation awareness (SA) in disaster management refers to conscious awareness of the
dynamic environment with respect to time or space and understanding of the elements
in the situation that are critical to disaster management decision-making. One major
challenge for a disaster management system is to build a dynamic situation awareness
system that can integrate all collected data, extract useful information from them, an-
alyze and predict based on extracted information, and present results into the disaster
coordinators’ mental model of what is happening and what is likely to happen so that
the latter can take effective and efficient actions. For instance, a vision of how, in the
near future, the public will provide information about disasters through social media
and how the information is processed, integrated, and utilized in emergency response
is depicted in Palen et al. [2010]. In this scenario, all kinds of possible social media
platforms receive crowdsourcing contents and disaster-related information is gathered
and fed into repositories of different purposes via social media plug-ins or APIs.

In this section, we provide an overview of techniques that improve the situation
awareness of a disaster management system. In Section 3.1, the challenge of integrat-
ing information from different data sources is addressed. In Section 3.2, the achieve-
ment of information extraction from unstructured textual data is delivered. Currently
the most prevalent information-sharing platform, social media not only provide us
the most diverse and substantial information but more important they provide the
most up-to-date information, which can be life-saving in disaster management. In Sec-
tion 3.3, we present the motivations for employing the state-of-the-art techniques that
utilize social media in disaster management. Section 3.4 and Section 3.5 introduce
information retrieval and advanced storyline generation techniques, respectively, both
of which aim to help the user rapidly acknowledge core information from massive data.

3.1. Integrating Information from Different Data Sources

A disaster management system receives and broadcasts information many different
ways (e.g., mailing lists, direct emails, press releases, web pages, and conference calls).
It is desirable to obtain the status of situations as soon as the relevant reports are avail-
able. However, users may upload status information with documents of various formats
(e.g., plain text, PDF, Microsoft Word, images, and videos). It is thus necessary to gather
useful information from documents with different formats. In larger organizations,
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or in the case that there is a host of members in a neighborhood (e.g., a corporate park),
multiple reports about a particular area might be redundant, which calls for a concise,
accurate, and consistent summarized view derived from diverse information sources.
Data integration and data fusion have been extensively studied in the database commu-
nity [Haas 2006], and have been applied to analyze multimedia data to further enhance
the performance of multimedia content-based retrieval [Bagheri et al. 2013], event de-
tection [Corey 2012], event summarization [Jiang et al. 2011, 2014; Chakrabarti and
Punera 2011], and semantic concept detection [Atrey et al. 2010].

To improve the situation awareness of disaster management systems, much of the
research effort in data integration is devoted to the following tasks: (1) to convert con-
tents of different formats into a standard format; (2) to verify the credibility of various
crowdsourcing data sources and attempt to leverage it to produce useful information
for disaster decision-making; (3) to map images or texts with their corresponding geo-
locations to better capture the current situation; and (4) to process and analyze the
data from different sources.

3.1.1. Standardization. One of the major challenges of integrating data in different for-
mats is that there is no standard way to represent all kinds of data. Peng et al. [2011]
propose an incident information management system with three major components:
data integration, data mining, and multi-criteria decision-making. The first component
(i.e., data integration) is composed of three layers: first, the Distributed Heterogeneous
Data Interface receives and converts heterogeneous data via wired or wireless chan-
nels; second, the XML-based Integrated Processor, by applying data fusion algorithms,
processes various types of data sources by modeling, integration, and fusion; and last,
the Unified Data Interface (UDI) provides an easy-to-use and standardized program-
ming interface to the data-mining and decision-making components. Following a simi-
lar principle, Hu et al. [2011] propose storing heterogeneous data in the XML format in
local files in order to speed up data transition. To visualize the disaster report in real
time via corresponding geo-location and to loosen up the process of integrating data
so that more observed data from volunteers can be contributed to existing disaster
systems, Ortmann et al. [2011] suggest “outsourcing” a substantial part of the data
integration to the crowd by asking people to process unstructured observations into
the form of 〈subject, predicate, object〉 RDF-triples (Resource Description Framework),
following the Linked Open Data principles [Bizer et al. 2009].

3.1.2. Verification. The challenge of verifying crowdsourcing data, which is obtained
via either social media (e.g., Facebook, Twitter, and blogs) or short message service
(SMS) sent through mobile phones, has been highlighted in work such as Heinzelman
and Waters [2010], Gao et al. [2011], and Roche et al. [2013]. Crowdsourcing is an
efficient method for quickly generating a large amount of near real-time data for a
given event. This is particular valuable for disaster management as the data is mostly
from people who are actually at the disaster scene or nearby, while other channels
of obtaining data are usually at least partially blocked or compromised. As a result,
the accuracy and validity of crowdsourced information is crucial for further identifying
actionable information and making timely decisions. Both Gao et al. [2011] and Zook
et al. [2010] suggest using collective feedback to “self-adjust” errors in crowdsourcing
data. However, this solution in general does not resolve the tension between experts
and amateurs when data quality is of high priority. Moreover, it also fails in situations
in which there are not enough people to serve as “verifiers.” Further investigations are
needed to address these issues.

3.1.3. Mapping and Linking. To utilize pinging outsourcing information (e.g., text de-
scription, videos, images, links to useful websites) in disaster management, Kumar
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Fig. 8. MADIS major components.

et al. [2011] develop an application called “TweetTracker” to demonstrate how instantly
pinging the content of tweets with disaster hashtags can be useful in visualizing situ-
ational awareness and monitoring tweet streams from both the spatial and temporal
perspective. White [2010] also proposes to collaborate with social media and link all
real-time multimedia information to the crisis map as a feasible solution to improve SA
in disaster management. Sakuraba et al. [2013] not only recognize the need to collect
disaster information in a GIS-based manner but also go one step further to display the
information on a tiled display platform; thus, more disaster-related information can be
analyzed on an ultra-high definition display environment.

In addition to integrating information by exploiting links among related data of
a single type (e.g., microblog texts), there are also works focusing on analyzing the
multimedia contents of different types (e.g., text report, images, and videos), and aiming
to discover the temporal, geospatial, or topical correlations. Yang et al. [2012] and
Zheng et al. [2011] introduce the Multimedia Aided Disaster information Integration
System (MADIS) and the ADSB system, respectively. Both systems are designed and
developed to first process each single data type independently and then associate them
based on the analysis results. Specifically, MADIS fuses image and text information so
that images can be accurately classified to the target disaster subject and associated
with the related disaster report. Figure 8 illustrates the interface with which users can
browse over the report list and all the related images.

3.1.4. Linked Open Data. The idea behind Linked Open Data (LOD) is to publish
machine-readable data in the RDF format on the Web [Yu 2011]. Acted as the most
exhaustive semantic knowledge base, it allows broad applications on three categories:
Linked Data browsers [Becker and Bizer 2008; Hastrup et al. 2008], Linked Data
search engines [Cheng and Qu 2009; Hogan et al. 2007], and domain-specific Linked
Data applications [Heath and Motta 2008; Becker and Bizer 2008]. Though LOD al-
lows public access to information originating from numerous information providers,
the quality of provided information varies due to different levels of knowledge and
different intentions of information providers. In Bizer and Cyganiak [2009] and Heath
[2008], an overview of different content-, context-, and rating-based techniques that
can be used to heuristically assess the relevance, quality, and trustworthiness of data
is given. Ortmann et al. [2011] suggested crowdsourcing LOD as the next step to-
ward a full exploitation of crowdsourced information in disaster management. Silva
et al. [2013] proposed an effective way, by means of the LOD technology, to bring a
large amount of data from different diversified data sources into a standardized and
exchangeable common data format, enabling their interoperability and integration in
disaster mitigation and preparation phases of disaster management.

3.2. Textual Information Extraction

IE studies the problem of how to automatically identify instances of facts – including
entities, relations, and events – from unstructured or semistructured texts, and con-
vert them into structured representations. IE can be used to build a database with
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information on a given relation or event from text data (such as reports, news, web
pages, and social posts) and is widely used as an important component in other in-
telligent information systems, such as question answering, summarization, machine
translation, and search engines. Research on IE dates back to 1979 [DeJong 1982] and
many IE systems have been built during the past two decades [Paik et al. 2000; Xu
et al. 2010a; Jayram et al. 2006]; see the survey articles Cowie and Lehnert [1996],
Chang et al. [2006], and Sarawagi [2008]. Early IE methods and systems are mostly
knowledge-based or rule-based (MUC-I – MUC-7). With the development of machine-
learning techniques, learning-based methods dominate IE over the last decade (ACE,
CoNLL). Recent IE research focuses on how to extract information from larger-scaled
and more complex texts, such as multilingual documents [Peters et al. 2012] and on
how to make use of knowledge base (KBP) [Hoffmann et al. 2011].

3.2.1. Information Extraction Core Modules. Currently, most IE systems consist of the fol-
lowing three core modules:

Name Tagging. This module recognizes and classifies phrases from text as named
entities. The most widely used categories of named entities are Person (PER)
– named person or family; Organization (ORG) – named organizational entity
(corporate, governmental, or other), and Geopolitical entity (GPE) – name of po-
litically or geographically defined location (such as cities, states, countries, con-
tinents, international regions, bodies of water, and mountains). Other categories
include location, artifact, facility, vehicle, weapon, product, time, and numeri-
cal quantities. Extended name hierarchy is introduced, which includes over 150
domain-dependent types [Sekine and Nobata 2004].

Relation Extraction. This module decides the relationship between two given named
entities or finds all pairs of named entities of a given relationship.

Event Extraction. This module recognizes in texts both triggers and their arguments
for predefined categories of events. An event is a specific occurrence that implies
a change of states. Description of an event includes an event trigger and several
event arguments. For example, in the text “the attack on Gaza killed 13,” “killed”
is a trigger of the event and both “Gaza” and “13” are arguments of the event.

In addition to these core modules, an IE system often contains a pipeline of funda-
mental natural language processing (NLP) tools, such as tokenization, part-of-speech
tagging, dependency parsing, and consistent parsing.

3.2.2. Challenges and Solutions for Information Extraction in Disaster Management. In the dis-
aster management domain, unstructured text (e.g., Adobe PDF and Microsoft Word) is
still one of the most widely used forms of information for storage and exchange. For
example, organizations (such as the Miami-Dade Emergency Office, the Fire Depart-
ment, and the Coast Guard) publish status reports frequently in unstructured text
following disaster events. Note that the same organization often follows a similar for-
mat for all its reports. This fact makes it possible to extract information using a fixed
set of rules if the sources (e.g., organizations) are known in advance. However, it is
much more difficult to incorporate information from new organizations whose report
formats are unknown, from sites whose news stories are in ad-hoc formats, or from
individuals on social media. New techniques are required to achieve high-quality IE
for such situations.

Adapting IE systems to new scenarios and tasks is quite difficult since most of
the current technologies often require interventions from IE experts. The adaptation
involves the following main tasks:
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Adapting to different domain-specific features. Reimplement and rebuild system
resources, such as lexica and knowledge bases;

Adapting to different sublanguages features. Modify grammar and lexicon to deal
with specific linguistic constructions that are typical for the application;

Adapting to different text genres. Specific text genres (e.g., medical abstracts, scien-
tific papers, police reports) may have their own lexicons, grammar, and discourse
structure; and

Adapting to different document types. For example, web-based documents can radi-
cally differ from newspaper-like texts.

As an important scenario example for open-domain IE, disaster-related benchmark
corpus data has been built. For instance, terrorist attacks are investigated under MUC-
3 and MUC-4 [MUC DATA SET 2001], and a corpus data of disease outbreak is built
and studied in Grishman et al. [2002]. Although not built to target the disaster domain,
some systems are evaluated on disaster-related data or based on user studies of disaster
management [White et al. 2001].

For a domain-specific IE system, it is vital to incorporate domain knowledge. For stan-
dard IE modules and methods, domain knowledge is coded in categories of named enti-
ties, relationships, event definitions, and labeled data. In Döhling and Leser [2011], a 5-
ary relationship is defined for information on earthquake damages. A dictionary+rule–
based method is used for named entity recognition and classification; a two-step ap-
proach, which consists of discovering entity pairs and identifying maximal cliques in
entity graphs, is then used for relationship extraction. Instead of labeling relation-
ship data, ontology – a widely used form of representing domain knowledge – is used
in Samiha et al. [2011] for IE in disaster management. In their work, entities are first
extracted from text using WordNet (a lexical database for English) and GATE (an open-
source text-processing software) and then mapped onto an existing disaster ontology. To
decide whether two entities have the relationship of their corresponding concepts in the
ontology, the lexical chain between these two entities and ontology-defined relationship
are compared.

Social media provide disaster management with more real-time data together with
new challenges. To cope with the problem that data from social media is large and noisy,
Imran et al. [2013] propose practical methods to extract information from social media
during disasters. They first classify each tweet into one of the following categories:
“Caution and Advice,” “Information Sources,” “Casualties and Damage,” “Donations,”
“People,” and “Other.” Then for each tweet, using a sequential labeling algorithm, class-
specific information is extracted for further analysis. For example, “Who is missing” or
“Who has been found” will be identified for tweets in the “People” category.

3.3. Utilizing Social Media

Social media provide services of online interactions among people who create, share,
and exchange information and ideas in real or virtual social networks. Typical so-
cial media includes blogs and microblogs (e.g., Twitter), content-sharing communities
(e.g., Flickr, YouTube), social networks (e.g., Facebook) and collaborative projects (e.g.,
Wikipedia). During the last decade, social media sites have become increasingly popu-
lar information distribution tools that allow users to share and exchange their status,
pictures and videos, ideas, and knowledge. Compared with traditional government sit-
uation reports or news reports for disaster management, social media provide faster
access to a wider range of disaster information due to their real-time nature and crowd
intelligence.

3.3.1. Overview. The main advantages of crowdsourcing via social media in disaster
relief are the following [Gao et al. 2011; Yin et al. 2012]: (1) using social media status

ACM Computing Surveys, Vol. 50, No. 1, Article 1, Publication date: March 2017.



Data-Driven Techniques in Disaster Information Management 1:17

reports and user requests are collected almost immediately after a disaster; (2) data
collected from social media can be analyzed and categorized by simple tools to identify,
for example, most urgent requests; and (3) geotag information associated with social
media messages can help relief organizations locate requests for help. On the other
hand, the authors also point out several limitations and shortcomings of social media,
including: (1) no common mechanism is provided for collaboration and coordination
between disparate relief organizations; (2) data from social media do not always provide
the right and accurate information; and (3) there are not enough security features for
relief organizations and operations.

In the past few years, many researchers conducted case studies of particular disaster
events to showcase how data gathered from social media benefit disaster SA.

—By studying a dataset of 50 million tweets from 218,860 frequent users from March 7
to March 24, 2011 during and after the Great East Japan Earthquake in 2011, Sakaki
et al. [2011] report that (1) the frequency of tweets was affected by planned blackouts,
which were performed several days after the earthquake; (2) the frequency of tweets
in heavily damaged areas decreased during the first several days that followed the
earthquake; and (3) shortly after the earthquake, tweet frequencies of smartphones
and feature phones were dominant in heavily damaged areas while the frequency of
PCs was dominant in less-damaged areas.

—In a similar study, Miyabe et al. [2012] find, from tweets after the Great East Japan
Earthquake in 2011, that people in the disaster area tended to directly communicate
with each other (reply-based tweet). In contrast, people in other areas preferred
spreading the information from the disaster area by retweets.

—Twitter data between February 27, 2010 and March 2, 2010 on the 2010 Chile earth-
quake is collected in Mendoza et al. [2010]. A study on one of its subsets indicates
that “false rumors tend to be questioned much more than confirmed truths.” This
study suggests the possibility of identifying rumor tweets by people who tweet when
there are enough similar tweets in the same category.

—Two Twitter datasets collected using keywords for the Red River Flood and
Oklahoma wild fires, both of which happened in Spring 2009, are analyzed in Vieweg
et al. [2010] in order to identify features of information generated during the dis-
asters. On-topic tweets about the disaster events are manually labeled and can be
categorized with situation categories, including “Warning,” “Preparatory Activity,”
“Fire Line/Hazard Location,” “Flood Level,” “Weather,” “Wind,” “Visibility,” “Road
Conditions,” “Advice,” “Evacuation Information,” “Volunteer Information,” “Animal
Management,” and “Damage/Injury.”

—The messages posted at an online forum, Tianya, during the first week after the 2008
Sichuan earthquake in China are studied in Qu et al. [2009]. Related threads are
manually selected and classified into “Information,” “Opinion,” “Action,” “Emotion,”
and “Other” categories. The authors identify the corresponding major roles that
Tianya played in the disaster relief efforts.

Palen and other researchers [Palen et al. 2007a; Palen and Liu 2007; Palen et al.
2007b; Shklovski et al. 2008; Vieweg et al. 2008; Palen et al. 2009; Shklovski et al.
2010] have extensively studied how ICT, most notably social media, help people during
disasters to form new communities with spatially dispersed participants, to gather
and distribute accurate information, and to work together and solve problems in a
distributed fashion.

3.3.2. How to Collect Related Content from Social Media. To make use of social media in
disaster relief and management, the first step is to collect related content from the
universal space of social media. Twitter provides streaming API, which collects tweets
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with a specified set of keywords. However, due to the ambiguity of a word and the
diversity of context in which it may appear, tweets containing disaster keywords may
not be talking about the disaster situation or may not even be disaster related. Typ-
ically, a two-step strategy is used tackle this: tweets are first collected using a set of
keywords and then a classifier is applied to filtered tweets.

Tweets on earthquake events are collected in Sakaki et al. [2011] first by a keyword
set Q = {“earthquake” and “shakes”}, then followed by a classifier using a support
vector machine (SVM). The classifier uses the following group of features:

Simple statistical features. The number of words in a tweet as well as the position
of the queried word in a tweet;

Keyword features. The words in a tweets; and
Context word features. The words adjacent to the queried word.

The work of Aramaki et al. [2011] focuses on extracting tweets that indicate an
influenza patient to detect influenza epidemics using Twitter. Tweets containing “in-
fluenza” or “flu” are first collected. However, these tweets may include tweets expressing
suspicions or questions or just talking about flu news. To filter out such tweets, several
classifiers are compared using the context word feature within a context window; SVM
with polynomial kernel is found to achieve the best performance.

These results can collect on-topic tweets from the entire tweet stream about a par-
ticular type of disaster. However, some on-topic tweets – although mentioning the
disaster events – do not contain information useful for a timely and informed decision.
It is proposed in Verma et al. [2011] to sift tweets that can contribute to SA during
disasters and apply NLP techniques to identify such tweets. Specifically, a classifier
is built for on-topic tweet datasets to filter tweets, with single features such as uni-
grams, bi-grams and part-of-speech tags, and linguistic features such as (1) whether
the tweet is objective or subjective; (2) whether the tweet is formal or informal; and
(3) whether the tweet is personal or impersonal. Experiments show that max-entropy
classifiers outperform native Bayesian classifiers, and good performance in different
disaster types can be achieved if classifiers are trained separately using all these single
features and linguistic features.

3.3.3. Statistical Analysis. Once tweets on disaster events are collected, as the volume of
such tweets can be very large, it still might be difficult to extract useful information to
help disaster-related decision-making. One solution is visualization. A typical central
component to visualize tweets is a map-based filter [Kumar et al. 2011; MacEachren
et al. 2011], which displays tweets on a map according to their geotags or the values
of some other attributes. To visualize topic change over time, TwitterTracker [Kumar
et al. 2011] includes a date-based tweet filter that supports the analysis of older tweets,
together with a play mode that helps visualize changes in tweets through hashtags
and entities. TwitterTracker also includes an entity and keyword analyzer that ranks
entities contained in tweets and displays frequent keywords as tag clouds as well as a
keyword trending engine that generates trends of keywords specified by the user.

SensePlace2 [MacEachren et al. 2011] provides a compact representation of the
frequency distribution of tweets and a control that filters tweets by time windows.
SensePlace2 supports a task list view that allows users to label and store query results.
These stored queries also record user-set parameters (e.g., place and time filtering and
decisions) to promote highly relevant tweets or hide irrelevant ones.

3.3.4. Prediction. To make the best use of this large number of tweets, in addition to
the analysis and visualization tools discussed earlier, prediction models provide an
alternative solution.
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Prediction of Influenza. In the United States, a component of the influenza surveil-
lance program tracks reported influenza-like illness (ILI) during influenza seasons.
Similar organizations exist in Europe (European Influenza Surveillance (EISS)) and
Japan (Infection Disease Surveillance Center (IDSC)). These systems rely on both
virology and clinical data and typically have a 1- to 2-week reporting lag.

To eliminate the lag, tweets about influenza are used to improve the prediction
[Signorini et al. 2011; Chen et al. 2010; Achrekar et al. 2011]. Signorini et al. [2011]
use SVM to build a regression model to predict ILI score using weekly term-usage
statistics on tweets as features. In Chen et al. [2010] and Achrekar et al. [2011], ILI
is predicted using past ILI data together with current and past social media data as a
time series prediction problem, on which the Auto-Regressive Moving Average (ARMA)
model is applied.

Early Detection of Disaster Events. A disaster event detection system using Twitter
data is described in Sakaki et al. [2010], which managed to send out earthquake warn-
ings in Japan earlier than the announcement broadcast by the Japan Meteorological
Agency (JMA).

3.3.5. Disaster Recovery. Data on social media not only help agencies with SA but also
provide specific information queries regarding the disaster.

A question-answering system in the disaster domain is introduced in Mizuno and
Inui [2013], which retrieves answers from tweet sets for disaster-related questions
such as “What is in short supply in Tokyo?” The core module of the question-answering
system extends a pattern-based relation extraction method, which extracts “X causes
Y” patterns from the data. It displays answers in two modes: semantic mode, in which
the answers are clustered by their semantic meanings with different colors, and Google
Maps mode, in which answers are located on Google Maps.

One difficulty of using social media in disaster relief is that aid request messages
and their corresponding aid provider messages are often not matched. This is because
it is hard for victims and the matching rescuers to exchange messages due to the
overwhelmingly vast amount of information flow during a disaster. A new method to
match such request–provider pairs is developed in Varga et al. [2013]. Their method
is similar to question–answer pair retrieval in question-answering systems, as aid
requests and aid providers are analogous to questions and answers, respectively. The
system consists of two SVM recognizers that identify whether a tweet is a request
report or an aid provider message, together with a request–provider tweet matching
recognizer, which exploits the dependency relations between tweet pairs extracted from
linguistic features.

A summary of utilizing social media for disaster management is provided in Table III.

3.4. Information Retrieval for Emergency Disaster Data Management

IR is the technique of searching for textual entities (e.g., reports) relevant to a user
query. Unlike IE, which concerns how to produce structured data ready for postpro-
cessing from unstructured texts, IR identifies relevant documents from a collection of
documents. Usually, a user query can be expressed as a collection of keywords, and the
retrieved results are returned in the form of a ranking list, ordered by the predefined
relevance scores.

Traditionally, the returned textual entities are ranked according to term frequency
and inverse document frequency of the query terms, where term frequency (tf) denotes
the number of occurrences of a term in an entity and inverse document frequency (idf)
denotes the uniqueness of the query term.

The disaster scenario poses additional challenges for IR as the data under consid-
eration is usually a combination of both static data and streaming data, the query
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Table III. The Summary of Utilizing Social Media for Disaster Management

Usage Area Methods Description: pros(+)/cons(−)

Relevant Content Collection Keyword-based filtering
(+) Straightforward;
(−) Not easy to choose proper keywords;
(−) False-positive information

Classification: SVM,
Entropy maximization,
Bayesian method

(+) Reduce false-positive information;
(−) Time-consuming feature engineering;
(+) More accurate

Statistical Analysis
Visualization:
Map-based filter, TwitterTracker

(+) Geo-information display;
(+) Dynamically track changes over time;
(+) Generate trends of keyword

SensePlace2
(+) User input allowed;
(+) Compact representation;
(−) Less user-friendly

Prediction
Influenza surveillance based on
virology and clinical data

(−) 1–2 weeks reporting lag; (+) Accuracy

SVM and ARMA based on
past media data

(+) Reduce time lag; (−) Feature construction;

Disaster discovery
Question–answer using pattern-
based relation extraction

(−) Template construction; (+) Straightforward

Question–answer using two
SVM recognizers

(+) Better match between question and answer;
(−) Feature construction;

delay should be as short as possible, and the retrieved results should be personalized
depending on the users – all due to the unique characteristic of the emergency disaster
management situation.

Some existing work on personalized web search [Sontag et al. 2012; Wang et al. 2013;
Fathy et al. 2014] can serve as a basis for meeting such challenges. In the disaster
management domain, a key ingredient for personalized IR is the domain knowledge,
such as rules and ontologies of disasters. For example, a disaster management ontology
may connect the terms “earthquake” and “tsunami” and make them logically correlated.
Such a correlation can be used to expand a user query. Recent research effort has been
devoted on domain-specific ontology query expansion [Chauhan et al. 2013, 2012; Hahm
et al. 2014]. If the domain ontologies are available, these methods can be leveraged in
disaster management IR.

Temporal and spatial locality is another important characteristic of emergency dis-
aster data IR. This is because a disaster usually lasts for a short period of time and
thus can only affect certain geographical areas. Recent research work on geospatial IE
and monitoring cluster evolution [Li et al. 2012; Stefanidis et al. 2013; Tahrat et al.
2013] are examples that exploit such locality characteristics.

3.5. Disaster Storyline Generation

As an application of the techniques discussed earlier, we now introduce disaster
storyline-generating systems [Lin et al. 2012; Wang et al. 2012; Zhou et al. 2014]
which extract event summarization information from heterogeneous data sources.

In disaster management, people are interested in the developments of events as
well as the differences among various phases as the events evolve over time. However,
document summarization mostly engages in generating a compressed summary that
delivers the major (or query-relevant) information of the original documents, while
news topic detection and tracking usually aim at grouping news articles into clusters
to present an event in a topic and then monitor future events related to the topic. As a
result, these systems mainly focus on highlighting and summarizing events in a topic
and lack the theme structure to capture the event evolution [Radev et al. 2000; Erkan

ACM Computing Surveys, Vol. 50, No. 1, Article 1, Publication date: March 2017.



Data-Driven Techniques in Disaster Information Management 1:21

Fig. 9. Comparison between storyline generation and ground truth.

and Radev 2004; Shen and Li 2010; Wang et al. 2008]. A disaster storyline describes
how a disaster evolves over time along the location attribute of the events and how
the disaster affects different areas indicated by the description attributes. A disaster
storyline offers a disaster evolutionary path not available in the perspective of either
the temporal or geospatial dimension.

Here an event is denoted by a tuple (t, �, s), where t is the time that an event occurs,
� is the event location, and s is the textual description about the event. For example,
(08/27/2011, New York City, “The five main New York City-area airports will be closed
to arriving flights”) represents an event in Hurricane Sandy. To generate the storyline
of a disaster, technologies such as event extraction, document summarization, and
mathematical tools such as linear programming are employed. Figures 9(a) and 9(b)
present the disaster storyline generated by the storyline generator, which is contrasted
with the one manually labeled by humans about Katrina disaster. The figures show that
the aforementioned system generates almost identical paths as the true evolutionary
ones, which can boost information absorption significantly and thus improve SA.

4. ADDRESSING USER’S PERSONALIZED INFORMATION NEEDS
IN DISASTER MANAGEMENT

When a disaster strikes, people at different locations, of different occupations, or play-
ing different roles in disaster relief will have different information needs. For instance,
before the hurricane arrives, the residents living close to a sea coast care about the
impact of the tsunami caused by the hurricane, while the residents living far away from
the coast care more about the chance of flooding in their specific area. After the hurri-
cane, enterprise administrators would like to know about the latest traffic conditions
and the status of their business partners, while inhabitants wish to know whether
local supermarkets are open and water and power supplies have been restored. There-
fore, the disaster-related information delivered should be personalized based on the
role and interests of the user. In the next section, we present techniques in automatic
information delivery and information sharing within communities that address this
issue.

4.1. Automatic Information Delivery

4.1.1. News Recommendation. Automatic information delivery can be seen as an ap-
proach of news recommendation in the disaster information system. The goal is to
automatically recommend the most relevant news or reports to each user. The rele-
vance is calculated based on the profile and historical behaviors of a user. For instance,
if a user’s profile indicates that the user lives in the coastal area of Miami Beach,
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Table IV. Summary of Data Mining Techniques Used for Information Personalization
in Disaster Management Systems

Methods Usage Area Description

Linear Regression Automatic information delivery;
relevance ranking

(+) Straightforward and efficient;
(−) Time-consuming feature engineering;
(−) Cannot capture feature correlation

Matrix Factorization
Automatic information delivery;
relevance ranking;
preference prediction

(+) Dimension reduction;
(+) Capture feature correlation;
(+) Identify latent factors;
(−) Not straightforward

Ontology Integration
Automatic information delivery;
relevance ranking; domain
knowledge representation

(−) Depend on existing method;
(+) Incorporate domain knowledge;
(+) Meaningful and interpretable result ;
(−) Not straightforward to incorporate ontology

then the news or reports on Miami Beach have a higher relevance than that of other
locations. On the other hand, if the user frequently explores the news and reports on
Miami Beach in the past, then other unread news on Miami Beach would have a higher
relevance.

The news recommendation problem may be formulated as a relevance scoring prob-
lem. For a collection of news or reports, if we are able to precisely predict their relevance
to each user, then the recommended results are simply the top K most relevant ones
among them. Thus, the core problem is how to precisely estimate the relevance score
between each piece of news and each user. Table IV summarizes different algorithms
for information personalization in disaster management.

4.1.2. Algorithms.

Linear Regression. A widely adopted approach to calculate the relevance scores is
the linear regression method [Seber and Lee 2012]. Linear regression is a well-studied
method in data mining that uses a linear function to represent the relation between
features and response values [Hastie et al. 2009]. The features of the relevance scores
problem include user profiles (such as user’s location, user’s professionals and so on)
and the characteristics of news (such as keywords, categories, and so on). The outputs
of the regression models are the relevance scores. Specifically, if x is the feature vector
(x1, . . . , xd)T and w is the parameter vector (w1, . . . , wd)T , then the response value can
be represented by a linear function of x as y = wT x. Using the database of historical
data, the coefficient vector w can be estimated through optimization.

Matrix Factorization. To capture the interaction between user features and news fea-
tures, an aspect that is not addressed in the linear regression model, recommendation
systems based on matrix factorization were recently proposed [Koren et al. 2009]. The
data in the matrix factorization model is represented by a binary matrix D, where an
entry Di, j = 1 if the ith user clicked the jth report in the past, and Di, j = 0 otherwise.
Certainly, there are many undefined entries in the matrixsince not every user saw ev-
ery piece of news. Thus, a recommendation system needs to solve a matrix completion
problem, which is to determine those unfilled entries in D. A reasonable assumption
is that matrix D can be approximately factored as D ≈ UR, where U and R are the
matrices consisting of the user vectors ui and news items vectors rj , respectively. Us-
ing the alternative least squares [Koren et al. 2009] optimization method, the missing
entries in D can be recovered.

4.1.3. Applications in Systems. The recommendation engine in the web-based prototype
of BCIN in Zheng et al. [2010] has multiple processing steps, in which information
from different data sources is integrated, ranked, and recommended based on users’
needs. The recommended information is then displayed in the dashboard module of
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the system, which is a visualization panel facilitating information presentation and
absorption. In a few practice sessions of the BCIN system the recommendation engine
has gathered and recommended various news reports from government agencies and
business companies. Recent recommendation systems [Li and Li 2014; Cantador et al.
2008] further incorporate ontology hierarchical information with news data and are
able to generate high-quality, query-focused summarization, providing an easy access
to structured and relevant information for users.

4.2. Disaster Information Sharing in Communities

Disaster data management requires updated and accurate information about the dis-
aster, such as the locations and status of shelters, the geographical details of the
affected areas, the availability of transportation means, and data about victims and
relief personnel [Li et al. 2011, 2014]. These data, in addition to frequently changing,
may belong to different organizations – for example, government/non-governmental
organizations, or specific industries/enterprises – for example, shipping companies and
retailing business. These public/private organizations and enterprises often interact
with each other, forming explicit/implicit communities (e.g., members of the same in-
dustry sector or customers of the same enterprise) [Zheng et al. 2010]. A huge amount
of information, originated from different communities and of various types or formats,
may be collected and disseminated among communities during a disaster. Furthermore,
operations on this information (e.g., collecting, integrating, storing, and querying) must
be performed on an unprecedented scale [Li et al. 2014]. It is challenging to manage
information processing tasks on such a large-scale, given the low latency requirement
in disaster management.

To ensure appropriate information sharing within communities and facilitate infor-
mation flow among different organizations, it is essential to identify how participants
interact within communities in a disaster situation: that is, how the information is
disseminated within a community or among multiple communities. This process may
also reveal important information that is helpful in other disaster scenarios, such as
early warning/recovery. Generally speaking, community information sharing in disas-
ter management involves the following challenges:

—If the structure of communities is not available, how can we automatically detect
the internal topology of each individual community and relations among different
communities? What types of data can be utilized to perform such a community
detection process?

—Once the structure of communities is identified, what is the optimal strategy to
deliver the appropriate information to the right member in a community?

—Given that different communities have different interests and focuses, how can we
get users within each community quickly involved in the communities? How can we
reduce the user effort to identify individuals with similar interests or situations?

4.2.1. Community Detection in Disaster Management. Automated community discovery
has been well studied in the context of IR [Xu et al. 2010b; Satuluri and Parthasarathy
2009]. The common strategy to detect communities involves utilizing social linking
structure data among members. A myriad of approaches in this direction have been
proposed, such as graph cut based partitioning and clique percolation methods
[Fortunato 2010; Porter et al. 2009]. Another direction for community discovery is to
use probabilistic models to capture the topics discussed by users within communities
[Rosen-Zvi et al. 2010; Zhang et al. 2007]. For example, two generative models were
proposed in Zhou et al. [2006] for community discovery in social networks, which com-
bine probabilistic modeling with community detection. The sender recipient relations
within social networks are regarded as the basis for modeling. A conditional model
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for link analysis together with a discriminative model for content analysis is proposed
in Yang et al. [2009]. By assuming that community memberships depend on topics of
common interest and utilizing links between members in social graphs, Sachan et al.
[2012] develop a generative model that can extract latent communities from social
networks.

In disaster management, the techniques of detecting communities in social net-
works can also be applied to discover the information-sharing communities during
disasters. The social links, as well as the textual content spreading among different or-
ganizations/enterprises/individuals in the disaster management system, are valuable
information that can be exploited for community detection.

In addition to social links and textual content, the geo-locations of participants can
be used to organize them into dynamic communities. For example, Zheng et al. [2010]
consider the following two characteristics of geo-location information in the disaster
recovery scenario: (1) the events that happen during the disaster are associated with
one or several locations; and (2) similar disaster damage situations are often shared
by spatially co-located members. Based on these observations, they develop a new
method to detect communities using spatial clustering techniques. Another work that
considers geographic information of community members is Ülgen [2005], in which
three innovative applications of geospatial techniques are proposed, including (1) a
neighborhood geographic information-sharing system, (2) a basic disaster awareness
program monitoring facility, and (3) a school commute contingency program that tracks
school-bus routes.

4.2.2. Information Sharing Strategies. During a disaster, large amounts of data – including
status reports and news events – are generated through different information chan-
nels. It is imperative for a disaster management system to effectively and efficiently
extract useful and pertinent information from raw data and dispatch that information
to users. To achieve this, a lot of solutions utilizing distributed computing environ-
ments have been proposed. For instance, in Li et al. [2011], a community-based scalable
cloud-computing infrastructure is presented for large-scale disaster management. The
infrastructure coordinates various organizations and integrates massive amounts of
heterogeneous data sources to effectively deploy personnel and logistics to people in
need of aid. A strategy for forming a community-based virtual database was proposed
in Li et al. [2014]. The proposed strategy connects local databases of suppliers to pro-
vide human and supply information for disaster management. The virtual database
facilitates collaborative information sharing among organizations, enterprises, or indi-
viduals within communities. In a different direction, Yu et al. [2012] present a frame-
work of community-based crowdsourcing, which consists of task-taker registration and
task distribution components. The rationale is that community-based crowdsourcing
promotes and better exploits the interactions among members in a community, thus
can accomplish tasks more effectively and efficiently.

Another means of effectively disseminating information within a community or be-
tween communities is utilizing geospatial data of the members. However, it is often
time-consuming to collect all the geo-locations of users, and sometimes the collected
geospatial information is not accurate enough. In the past few years, a new source –
messages in social media, in particular, microblogging – emerged as an alternative
promising channel for collecting user geo-locations. A representative of such services
is Twitter, in which the user’s geospatial information (longitude/latitude) is contained
in every post (tweet). In fact, social networks are playing increasingly more impor-
tant roles in disaster management [Palen and Liu 2007; Shklovski et al. 2008; Vieweg
et al. 2008; White et al. 2009; Li and Goodchild 2010]: from crowdsourcing disaster
geospatial information, collectively generating and disseminating data, forming new
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communities among spatially dispersed members, to distributively solving problems
(see Section 3.3 for more discussions).

4.2.3. Community Recommendations in Disaster Management. Social media allow a user
to broadcast within seconds messages to a large group of community members. A
community recommendation (or user recommendation) system, on the other hand,
offers a user suggestions regarding which other users in the network to connect with
or which communities to join.

Community recommendation from a network perspective amounts to “finding miss-
ing edges in a user network.” Approaches to this problem usually make use of the
node connections as well as the network structure – for example, network topologi-
cal features-based methods [Liben-Nowell and Kleinberg 2007], supervised learning
methods [Al Hasan et al. 2006], and relational learning methods [Popescul and Ungar
2003]. In social networks, the user-generated content (such as user relationships or
posts) is a valuable and useful information source for modeling users’ preferences. Re-
cently, several methods have been proposed for user recommendation in social media
using the latent Dirichlet allocation (LDA) model for users’ stream [Pennacchiotti and
Gurumurthy 2011].

Community recommendation helps users identify user groups with similar interests
or situations. In the area of IR, researchers have developed several community recom-
mendation approaches based on the characteristics of social media data. Specifically,
a personalized community recommendation method based on collaborative filtering
was introduced in Chen et al. [2008]. The proposed method considered different types
of co-occurrences (e.g., semantic and user information) in social data. In Chen et al.
[2009], association rule mining was first used to discover similarities between sets of
communities, and LDA [Blei et al. 2003] was then applied to model user–community
co-occurrences. A new principled framework of recommending users and communities
in social media was proposed [Li et al. 2013] by employing a generative topic model to
simultaneously discover community-oriented and user-oriented topics.

To expedite the information-spreading process within and among communities, a
reasonable step is to automatically “push” newly published information to users. In
this way, the time-consuming user queries are reduced and the latest information is
dispatched to users in a more timely fashion. Along this direction, Zheng et al. [2011]
present a disaster situation browsing system on mobile devices. For different pieces
of information in a disaster situation, the system can automatically and interactively
recommend potential recipients. In addition, a convenient interface is provided for
users to explore other users’ recommendations and to share reports with others.

5. GENERAL DATA MINING AND LEARNING TECHNIQUES IN DISASTER MANAGEMENT

In this section, we present more applications of data-mining and machine-learning
techniques in many other aspects of data-driven disaster management systems.

5.1. Natural Disaster Predictions

Natural disasters, such as hurricanes and earthquakes, are complex physical phe-
nomena that result in enormous economic and human losses. One cannot overempha-
size the importance of successful prediction, or even early warning, of these natural
disasters. Early disaster predictions mostly rely on statistical analysis and involve
complex models and strong assumptions. With recent advances in data acquisition
techniques – such as global positioning systems (GPS) and high-resolution remote sens-
ing – and the development of information technologies which makes, for example, a
large volume of Internet-based volunteered geographic data available, increasingly ad-
vanced machine-learning and data-mining techniques have been developed for disaster

ACM Computing Surveys, Vol. 50, No. 1, Article 1, Publication date: March 2017.



1:26 T. Li et al.

Table V. Summary of Prediction Methods in Disaster Management

Methods Usage Area Pros (+) / Cons (−)

Neural Network
Magnitude, location,
and time of earthquakes;
radon concentration

(+) Model non linear relations
(−) Cannot predict time, epicentral location
(−) Slow convergence

Decision Tree Radon concentration, sequence data,
premonitory factors

(+) Attribute construction
(+) Analyze premonitory factors
(−) Less accurate

Clustering
Precursory events for seismic
activities, dynamics of earthquakes,
tropical cyclone tracks

(+) Unsupervised
(−) Sensitive to initialization

Association Rule Intensity change of tropical cyclone
(+) Understand the coupling relationships
of the physical processes
(−) Sensitive to initialization

Others Parameters of earthquakes,
intensity of hurricanes N/A

predictions. These techniques include neural networks, decision trees, clustering, and
association rule mining and have been reported to be effective especially for short-term
predictions. In this section, we discuss some recent progress of these prediction meth-
ods and use earthquakes and hurricanes as examples. A summary of these methods is
presented in Table V.

5.1.1. Neural Networks–Based Prediction Methods. The neural networks–based ap-
proaches aim to model the nonlinear relationship between physical phenomena and
various environmental parameters. Three different neural networks – feed-forward
Levenberg-Marquardt backpropagation (LMBP) neural network (NN), radial-basis
function (RBF) NN, and recurrent NN – are investigated in Panakkat and Adeli [2007]
to predict the magnitude of the largest seismic event in the following month with eight
physical and mathematical earthquake parameters called seismicity indicators as NN
inputs. These NN models are trained and tested using data from Southern California
and the San Francisco bay region. It is reported in Panakkat and Adeli [2007] that the
recurrent NN model outperforms other models and works the best for earthquakes of
magnitude between 4.5 and 6.0. Similar studies have been carried out by the authors
to predict earthquakes of magnitude greater than 6.0 [Adeli and Panakkat 2009]
as well as the location and time of occurrence of future earthquakes [Panakkat and
Adeli 2009]. More recently, a population-based algorithm was proposed in Shah and
Ghazali [2011] to improve the training process of the Multilayer Perceptron (MLP)
model, which is used for earthquake predictions. A layered neural network (LNN)
model is proposed in Negarestani et al. [2002] to “estimate the radon concentration
in soil related to the environmental parameters.” Such a relationship can be used
to distinguish abnormal variations caused by anomaly phenomena in the earth
(e.g., earthquakes) from those normal variations due to environmental changes. The
method is shown to be superior to the linear computational technique, as it can better
“estimate radon variations related to environmental parameters that may have a
non-linear effect on the radon concentration in soil.”

5.1.2. Decision Trees–Based Prediction Methods. A decision-tree model is used in Zmazek
et al. [2003] to study the correlation of radon concentration in soil gas to environmental
parameters. It is found that the decision-tree model can predict radon concentration
of correlation 0.8 with observed data. However, such a correlation decreases before
earthquakes with local magnitude 0.8–3.3. The general problem of early prediction of
sequence data – whose many applications include early prediction of earthquakes and
tsunamis – is investigated by Xing et al. [2008], who study two methods solving the
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problem of supervised learning on sequence data. The first is a sequential classification
rule (SCR) method, which extracts discriminative features from the training set se-
quences first and then mines a set of sequential classification rules to form a classifier.
The second is a generalized sequential decision tree (GSDT) method, which constructs
each attribute using a small set of features that have high early prediction utility.
The proposed approaches are able to use only very short prefixes of the sequences and
achieve very good accuracy. In Sikder and Munakata [2009], rough-set and decision-
tree methods are compared for identifying the premonitory factors for earthquake.
These two machine-learning techniques are considered particularly suitable for
earthquake prediction because they are nonparametric and less restrictive on model
assumptions.

5.1.3. Clustering-Based Prediction Methods. A novel two-level resolution cluster method,
which also employs feature extraction and data visualization techniques, is introduced
in Dzwinel et al. [2005a, 2005b] to recognize precursory events for seismic activities
around the Japanese island areas between 1997 and 2003. Specifically, local clustering
on original observed seismic activity data and nonhierarchical clustering on the data
in the feature space (whose coordinates are nonlinear functions of the original mea-
surements) are combined tto study the dynamics of earthquakes. In Kim et al. [2011],
a fuzzy c-means clustering method is proposed to classify tropical cyclone tracks in
the western North Pacific between 1965 and 2006. The optimal number of clusters
are determined by four scalar validity measures: partition coefficient, partition index,
separation index, and Dunn index. Their results show that 855 tropical cyclone tracks
are clustered into 7 groups, each with distinctive features, such as lifetime, landfall
region, intensity, and distribution of rainfall. Such a classifying result is very useful
for predicting the behaviors of future tropical cyclones in that area. The authors later
propose a seasonal tropical cyclone forecast model by combining the fuzzy c-means
clustering method with statistical dynamics [Kim et al. 2012].

5.1.4. Association Rule Mining–Based Prediction Methods. To predict the intensity change
of a tropical cyclone (TC) in the next 6 hours, the Apriori algorithm [Agrawal and
Srikant 1994] is applied in Tang et al. [2005], which uses 13 attributes – such as date
and hour of observation, distance between TC center to nearest land, and average sea
surface temperature – from the raw data to identify 5 rules on how a TC would change
its intensity. The same prediction problem is formulated as a supervised data-mining
problem in Chatzidimitriou and Sutton [2005], in which the objective function is set
to be the prediction accuracy with regard to changes in wind speed. The problem of
hurricane trajectory prediction is studied in Dong and Pi [2013] by a data-mining
approach, which applies an association analysis on the historical data of hurricane
movements.

5.1.5. Other Methods. In addition to the these developments, other machine-learning
and data-mining techniques have been developed for disaster predictions [Azam et al.
2014]. For example, fuzzy logic is applied to synthetic seismic data to predict the pa-
rameters of earthquakes [Aydin et al. 2009] for earthquake prediction, and a hurricane
intensity prediction model is developed in Su et al. [2010] by integrating feature weight
learning (WFL) and the Extensible Markov Model (EMM). Song et al. [2014b] and Fan
[2014] have developed an intelligent system as well as related probabilistic techniques
to automatically discover, analyze, and simulate population evacuations during disas-
ters such as the Great East Japan Earthquake and the Fukushima Daiichi nuclear
accident.
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Table VI. Summary of Risk and Insurance Modeling

Usage Area Methods Description; Pros(+)/cons(−)

Risk Analysis
Bayesian Network

(+) Capture hidden interaction between parameters;
(+) Domain knowledge integration;
(−) High complexity of training Bayesian networks

Back Propagation
Neural Networks

(+) Capture nonlinear relationship;
(+) Agree more with actual situation;
(−) Feature construction

Other Methods of Risk
analysis from images:
J48, LSSVM, and others

(−) Labelled data for supervised learning;
(+) More accurate; (−) Feature construction

Fig. 10. List of insurance models for different
kinds of disasters.

Fig. 11. A Bayesian network for predicting
windstorm-induced damage to roof structures.

5.2. Risks and Insurance Modeling

As large-scale disasters such as hurricanes, earthquakes, and floods usually cause dev-
astating damage, it is important to have experts from multidisciplinary backgrounds
build risk assessment and insurance models that estimate and predict the damage ra-
tio. With risk analysis and accurate assessment of damage caused by different disasters,
governments can adopt suitable measures to reduce the risk, plan risk control strate-
gies accordingly, and legitimately prevent the insurance companies from demanding
unreasonable insurance policy rates.

A well-established risk assessment model or a reliable, validated insurance model
is usually composed of several components, as illustrated in Figure 10 for natural
disasters such as earthquakes [Tsai 2010; Hsu et al. 2006; Tsai and Chen 2010; Hsu
et al. 2013], floods [Hsu et al. 2011], or hurricanes [Hamid et al. 2010]. A summary of
risk and insurance modeling is given in Table VI.

To accurately assess the damage caused by unpredictable earthquakes, a framework
to perform catastrophe modeling and risk assessment is proposed in Hsu et al. [2006],
which includes the following four major components: (1) A stochastic event generator,
which utilizes historical earthquake data to simulate and produce a list of stochastic in-
cidents; (2) A hazard analysis procedure, which calculates the expected intensity of the
earthquakes for specific locations; (3) A vulnerability analysis procedure, which com-
putes the likely loss caused by a building’s exterior and interior damage, interruption
of transportation services, and so on. This loss assessment computation is performed
based on the fragility curve computed for the building or probability of various damage
caused by earthquakes with a given intensity; and (4) A financial analysis procedure,
which calculates the economic loss due to the damage of buildings for all the involved
parties. A similar structure of the insurance model is also built for other disasters.
Usually, stochastic records are generated based on historical information by simula-
tion models such as the Monte Carlo method, with parameters tuned accordingly, and
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possible damage is considered from different perspectives, then later converted into
financial loss.

Within this insurance loss model, much effort has been devoted to the following
questions: How do we associate disaster factors with overall damage? How do disaster
factors interact with each other and lead to different levels of damage? How do we
identify the most important factors in the risk assessment model and insurance model?
To tackle these questions, data-mining methods have been applied on huge datasets
with strong nonlinearity, outliers, and noise to capture the correlation between disaster
factors and estimated losses.

5.2.1. Bayesian Network in Risk Analysis. Risk analysis is computationally complex due
to the large number of parameters involved and interdependencies among them are
difficult to understand and predict. Bayesian networks have been proved to be good at
leveraging the uncertain expert knowledge in decision analysis and graphically rep-
resenting the interdependencies among underlying parameters [Heckerman 2008]. To
study the risk analysis on windstorm-induced damage to roof structures, Durgaprasad
and Subba Rao [2012] employ a Bayesian network to model the hidden interaction
between parameters and their unknown mechanism to cause damage. Figure 11 il-
lustrates how a Bayesian network models the interdependencies between windstorm-
induced damage and roof structures. Another framework to build Bayesian networks,
which leverages the integration of domain knowledge and spatial data, appears in Li
et al. [2010]. First, a nonparametric unsupervised learning method called Kernel Den-
sity Approximation (KDA) is used to preprocess the data so that the influence of the
geospatial features can be extracted. Then, two well-known methods – Minimum De-
scription Length (MDL) and Principal Component Analysis (PCA) – are applied for
discretization and feature selection, respectively. The method is evaluated for flood
disaster study and compared against nine other methods, such as C4.5 decision tree,
random forest, and logistic regression, and is shown to excel in the detection of high-
risk, precision, and receiver operating characteristic (ROC) areas.

5.2.2. Back Propagation Neural Networks in Risk Analysis. It is well known that usually the
coupling between a tropical cyclone and the disaster factors that it incurs is strongly
nonlinear. This suggests that the Back Propagation (BP) artificial NN, which was
developed for fuzzy problems, is a good candidate for cyclone risk analysis. By applying
PCA, a BP network is built in Lou et al. [2012] over the selected and highly correlated
assessment factors so that an effective risk assessment model can be constructed to
estimate economic losses caused by tropical cyclones. The BP network model (adopting
the Levenberg-Marquardt (LM) algorithm) and entropy-based Attribute Recognition
(AR) model are evaluated in Yang et al. [2009] for flood disaster grade analysis. The
latter model is reported to agree more with actual situations.

5.2.3. Other Methods. Optical satellite images are combined with a digital terrain
model (DTM) and hydrological network in Peter et al. [2013], together with several
other machine-learning methods to distinguish flooded areas from unflooded areas.
Among all the methods, decision tree algorithm J48 outperforms other methods in de-
tecting the flooded area for the Ljubljana moor floods in 2010. In Cheng and Hoang
[2012], an evolutionary fuzzy least-squares support-vector machine (LSSVM) infer-
ence model is applied to evaluate the risk of bridge damage. In addition, eigenvalue
and projection pursuit methods are used in Hexiang and Qingjuan [2007] to forecast
the risk of flood; a fuzzy classification model and linear weighted mean model are used
in a two-level fuzzy synthetic evaluation system in Liu et al. [2009b] to evaluate the
fire risk ranking of buildings; and a dynamic assessment model based on vague sets,
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Fig. 12. Knowledge integration in visual
analytics.

Fig. 13. System architecture of a 3D storm surge
simulation.

information axiom, and comprehensive assessment method is proposed in Liu and Zuo
[2015] for evaluating urban multihazard, integrated natural disaster risk.

5.3. Visual Analytics

Visual analytics is “the science of analytical reasoning facilitated by visual interactive
interfaces” [Thomas and Cook 2006], which can attack certain problems whose size,
complexity, and need for closed coupled human–machine analysis may make them
otherwise intractable. Visual analytics is a multidisciplinary field that combines data
analysis, data management, information visualization, scientific visualization, human
cognition and perception, and knowledge discovery [Keim et al. 2008] (see Figure 12).
People apply visual analytics techniques to synthesize information in novel ways in
order to gain insight or identify patterns from massive, complicated, and sometimes
even conflicting data.

5.3.1. Visual Analytics Systems. Conceptually, the guidelines for designing a visual ana-
lytics system include the following [Cook and Thomas 2005; Thomas and Cook 2006]:
(1) support integration and transformation of different data formats into a unified
representation; (2) support the understanding of both spatial and temporal data; (3)
support the understanding of massive and dynamic data; (4) support the understand-
ing of ambiguous, incomplete, or even conflicting data; (5) support adaptedness to user
needs and task situations; and (6) facilitate interactions between users and the system
to support cognition, perception, and analytic reasoning. Scholtz [2006] suggests five
aspects of visual analytic environments as metrics for evaluation: SA, collaboration,
interaction, creativity, and utility.

5.3.2. Why Disaster Management Needs Visual Analytics. Disaster management is a very
complex task that involves processing large amounts of heterogeneous data. Visual
analytics is a proven approach that interactively combines human intuition and per-
ception, methods from knowledge discovery in databases (KDD), and tools in statistics
and mathematics to derive patterns, knowledge, and insight, ultimately leading to bet-
ter decision-making. Turning the information overload into opportunities is the over-
arching driving vision of visual analytics. In the domain of emergency management,
depending on the specific cases, visual analytics is helpful in determining the extend
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of damage, identifying objectives, assigning priorities, and facilitating effective coor-
dination among various organizations for more efficient operations, such rescue and
evacuation in the disaster zone. Moreover, a visual analytics system can visually and
interactively display the incoming data, thus helping commanders better comprehend
the situation and make the right decisions.

5.3.3. Visual Analytics in Disaster Management. Tomaszewski and colleagues
[Tomaszewski 2008; Tomaszewski and MacEachren 2010] initiate a conceptual
approach for modeling geo-historical context (GHC) that can be obtained through
entity extraction and relevance ranking of retrieved documents. GHC encompasses
three aspects of context – spatial (geographical), temporal (historical), and conceptual –
and provides a framework in which the spatial, temporal, and conceptual context
information of text documents can be visually represented to facilitate decision-
making in disaster management. Another disaster management framework, SoKNOS
[Döweling et al. 2009; Paulheim et al. 2009; Babitski et al. 2011], is an ontology-based,
user-centric, interactive system that aggregates heterogeneous information and
provides visualizations of the situation on different levels of generalization.

An important application of visual analytics in disaster management is to enhance
SA. For example, visual analytics techniques have been applied to render rainfall
accumulations in real time at the resolution of hydrologic units and provide decision-
makers a powerful tool for assessing neighborhood flooding situation [Liu et al. 2009a]
and to perform risk assessment or security vulnerability assessment for the critical
infrastructure of a city [Kulawiak and Lubniewski 2014]. Uncertainties in disaster
development sometimes complicate the planning of mitigation efforts, as there may
be many possible scenarios, each calling for different response plans. An integrated
solution for floor management is introduced in Waser et al. [2014], which integrates
scalable multidimensional ensemble simulations and logistics optimization with rich
visualization capabilities. The system is able to generate and simulate many disaster
scenarios as well as the interactive 3D views of the corresponding response plans.

Social media offer informative and timely information, which make them an in-
dispensable information resource for disaster relief. As users tend to update more fre-
quently, microblogging, such as Twitter, is a faster channel for information sharing than
traditional blogging. On the other hand, the geospatial information of tweets provided
by the Twitter API makes tweets a large data source of volunteered geographic informa-
tion, which has been exploited recently for event exploration [Marcus et al. 2011], oper-
ational crisis management [Terpstra et al. 2012], and discovering significant spatiotem-
poral events [Thom et al. 2012]. With respect to disaster management, TwitterHitter
[White and Roth 2010] is an application that utilizes geovisual analytics and informa-
tion visualization techniques to gain spatiotemporal insights from tweets and can be
applied in a variety of tasks, such as criminal investigation and disaster management.
Another similar application [MacEachren et al. 2011], which is also based on geovisual
analytics on tweets to support crisis management, focuses more on information foraging
and sense-making by leveraging the place, time, and concept characteristic of tweets.

Disaster management often involves coordinating personnel and operations from
multiple locations. To synchronize distributed users under a visualization environment,
one solution is to use an adaptive time adjusting algorithm to modify the output time
of different units [Natarajan and Ganz 2009] or to use open-source web standards
developed by the Open Geospatial Consortium (OGC) and WorldWideWeb Consortium
(W3C), the latter of which is built on the web-based client-server models to serve shared
content and geospatial information [Heard et al. 2014]. A system that is based on a
visualization technique called “Framy” and designed specifically for mobile devices is
presented in Paolino et al. [2010].
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Analysis of public behaviors during and after disasters is important for evacuation
planning. Visual analytics tools have been applied to the data collected through field-
work and questionnaires in Gismondi and Huisman [2012] to represent and analyze
residents’ movement paths over time during a post-earthquake period, and applied to
tweets in Chae et al. [2014] to provide an interactive spatiotemporal visualization and
facilitate temporal pattern analysis, spatial analysis, and decision support.

5.4. 3D Simulation of Disaster Impacts

The deadliest natural disasters, such as hurricanes, are a big threat to the United
States’ East and Gulf Coasts. Accounting for 90% of hurricane-related fatalities, the
rise of ocean water due to a hurricane’s strong winds, or storm surge, is the greatest
cause of human life and property losses. Furthermore, saltwater flooding is the major
origin of damage to buildings and infrastructure [Pava et al. 2010a]. As a hurricane
approaches a coastal area, various storm-surge models are used to predict the potential
height of the storm surge in the projected rainfall area. Typically, the models are
presented to coastal residents as color-coded, two-dimensional maps. However, for an
untrained eye, it is hard to relate such two-dimensional maps to the daily three-
dimensional (3D) real world. Much research effort has been carried out to develop
3D storm surge visualization systems that better illustrate the disaster situation and
facilitate residents to make potentially life-saving evacuation decisions [Singh et al.
2005; Zhang et al. 2006; Pava et al. 2010a; Zhang et al. 2006]. In this section, we will
focus on the 3D simulation of hurricanes and storm-surge flooding.

Visualization of the storm surge plays an important role in creating an interactive
3D animation environment for real-time modeling of hurricanes. Existing graphic ani-
mation engines can be used to animate objects such as buildings, trees, human figures,
vehicles, and their behaviors in a hurricane situation to portray realistic storm-surge
effects. The open-source Virtual Terrain Project (VTP) is usually selected as the 3D
visualization environment platform for storm-surge animations. The VTP allows ef-
ficient animations of storm surge, wind, rain, traffic, vegetation, lightning, and more
using OpenGL [Khronos Group 1997].

5.4.1. 3D Storm Surge Simulation System Architecture. Figure 13 presents the high-level
view of the architecture of a 3D storm surge simulation system [Zhang et al. 2006].
The data-processing layer provides the facilities to process Light Detection and Ranging
(LiDAR), the Coastal and Estuarine Storm Tide (CEST) model [Pava et al. 2010a; Zhang
et al. 2008], and Digital Line Graph (DLG) data into formats that can be recognized
by VTBuilder [Discoe 2002]. The output of VTBuilder is then used to construct 3D
representation of terrain, buildings, and roads in the construction layer. Figure 14
shows a screen capture of FIU building models generated by VTBuilder. Wind and
storm surge data from the CEST model are used to drive the individual graphics
animation engines for wind, storm surge, vegetation, rain, traffic, and ocean waves.
Access to the VTBuilder is bidirectional so that 3D models may be modified after the
input data have been processed. The graphics animation engines and 3D models are
then passed on as input for final rendering. This last layer provides the user with an
interactive and 3D navigation of the storm surge visualization, along with animated
storm surge, rain, lightning, clouds, vegetation, traffic, sun, and so forth.

5.4.2. Ocean Water and Rain. The ocean animation is directly tied to the storm surge
engine, which, based on the latest storm-surge data, computes the height of the flat
mesh used to represent the ocean. The mesh of the ocean is then animated to model
ocean waves. In visualizations, the ocean is modeled as a flat mesh whose height
may rise or fall depending on the latest storm-surge data. The surface of the mesh is
animated by an OceanWave engine using Fournier’s model for ocean waves [Fournier
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Fig. 14. The FIU building model. Fig. 15. Ocean wave animation.

and Reeves 1986]. Figure 15 shows a screen capture of the water animation using the
model described. To produce more realistic scenery, an ocean water spray effect is added
to simulate when ocean waves crash against the shore. Such a spray effect is modeled
using a particle system, in which each water droplet resulting from the ocean spray is
represented by a particle. The emission of spray from the ocean wave must meet two
conditions: (1) the particle’s speed has to be greater than the wave’s phase speed and
(2) the curvature of the surface has to be high.

The rain engine used to render precipitation is also based on a particle system. Each
raindrop is modeled as a particle whose size and current position on the screen are
stored in an array. At every frame in the animation, the array is updated to reflect the
next position of the raindrop as it falls from the sky. The position of a rain particle is a
function of the current wind speed and direction. These data are then used to render
raindrops in the animation.

5.4.3. Clouds, Trees, and Lightning. A combination of static and dynamic techniques is
utilized to enhance the animation effects of clouds, trees, and lighting.

Two cloud patterns are used to represent the sky in normal and hurricane conditions:
a normal sky is clear with few clouds, while the hurricane sky is filled with dark and
thick clouds to provide users with a sense of severe weather.

Tree animation is implemented by a billboard model in which each tree is represented
by planar-texture-mapped geometry with various angles. Such a billboard model is
easy to implement and requires only moderate computing resources. A vegetation
engine is designed to simulate tree bending, rotation, and damage in hurricane storm-
surge scenarios. For example, trees shake along the wind direction to an extent that is
determined by the wind velocity.

Lightning is modeled as a sequence of lines and is approximated by a tree growing
inversely from the sky to the ground. The root of the lightning tree is randomly gen-
erated at an arbitrary position in the sky. The subbranch of the lightning tree is also
generated randomly from the main branch once the main branch is rendered.

Traffic is a very important engine in the 3D simulation system. A traffic animation
system based on road segmentation is introduced in Li et al. [2009]. The system simu-
lates the impacts of storm surge on the road systems in the coastal regions of southern
Florida. To reduce computation cost, simple geometric shapes with added realistic ef-
fects are used to represent objects. The traffic system consists of two kinds of objects:
road objects and vehicle objects.

A road is represented with an array of connected, adjacently nonparallel line seg-
ments. Such a representation, as illustrated in Figure 16, facilitates a simple animation
for vehicles to move on the roads. The road segment attributes include coordinates and
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Fig. 16. 3D simulation of road segment. Fig. 17. Constant vehicle parameters.

length and direction angles, which are used to simulate vehicles moving on the roads
and are stored in the road segment objects.

A vehicle in the traffic system is represented by a vehicle object, which stores at-
tributes necessary for traffic simulation. There are two categories of attributes, con-
stant and dynamic: constant attributes are assigned values during every system ini-
tialization and do not change after that, while dynamic attributes are updated contin-
uously during an animation. These attributes, illustrated in Figure 17, usually specify
the relationship between a vehicle and a road segment.

To render high-quality animation of storm-surge impact on traffic, three additional
features are implemented to render interactions within or beyond the traffic system:
interactions between vehicles, vehicle responses to surge flooding, and automatic dis-
tribution of lampposts along roads.

6. CONCLUSION

Data-driven disaster information management is an emerging and interdisciplinary re-
search area that calls for collaborations between researchers with various backgrounds.
In this article, we present a comprehensive survey on recent efforts in leveraging ad-
vanced data management and analysis techniques to build better disaster information
management systems. To this end, we review and categorize results from a variety of
research areas. Our hope is that this survey not only provides an overview of exist-
ing data-driven techniques for disaster management but also sheds light on specific
application tasks related to disaster information management.

We end the survey with a compiled list of research problems. We classify the problems
into the following three categories: (1) information and knowledge discovery in disaster
management, (2) integration with the Geographic Information System (GIS), and (3)
disaster data analysis platform.

—Information and Knowledge Discovery. Within this category, the following prob-
lems require further investigation: (a) Support intelligent ad hoc or continuous
queries on heterogeneous, multisource streaming disaster data. To achieve this,
effective and efficient information and knowledge discovery algorithms must be
developed considering both the context and the stakeholder’s profile. In addition,
domain-specific parameterized queries should be efficiently supported. (b) Facilitate
real-time queries and discover patterns and information snippets spanning across
multiple streams through developing high-throughput indexes and advanced knowl-
edge discovery techniques for streams. (c) Build customized information extraction
algorithms that learn from the interaction between domain experts and the system.
(d) Incorporate uncertainty and possible adversariness in handling and delivering of
data.

—Integration with Geographic Information System (GIS). A Geographic Infor-
mation System [Goodchild 2009] is an information system this is able to integrate,
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store, edit, analyze, share, and display geographically referenced information. GIS
applications are useful in many disaster management–related activities, such as
creating hazard inventory maps, locating critical facilities, managing associated
databases, and performing vulnerability assessment. An important research direc-
tion is the integration between a GIS and other components in disaster management
systems. Such an integration will greatly enhance user experience and improve infor-
mation and knowledge discovery in disaster management. Specifically, the following
problems are worth further investigating: (a) automate or crowdsource the linkage
construction between information/data and geomap in real-time – once life, property,
and environmental data records are combined with hazards, emergency management
personnel can formulate mitigation, preparedness, response, and recovery program
needs [Horita et al. 2013]; (b) provision intelligent alerts and location broadcasting
when people enter a dangerous zone or an unusual location ; (c) utilize social net-
works not only as data sources but also tools for help and locating people in danger.

—Disaster Data Analysis Platform. Disaster data are in general from different
sources and are heterogeneous in nature. With regard to data analysis in disaster
management, effective and efficient methods are required to analyze an ever in-
creasing amount of data, discover the interdependencies of data, and extract useful
information and knowledge for problem-solving and decision-making. An additional
challenge is how to integrate data with great diversity and provide an aggregated
view of the application domain. Such a diversity may exist because data are from
heterogeneous sources with different levels of redundancy, accuracy, and uncertainty
or may be due to different characteristics of data (e.g., structured/unstructured, real-
time streams/static data). As a result, an integrated platform is often necessary for
disaster data analysis. In our prior work, we have developed a distributed comput-
ing platform FIU-Miner [Zeng et al. 2013] to support efficient data analysis and
an online geospatial data analysis and visualization system called “TerraFly Geo-
cloud” [Zhang et al. 2015; Zeng et al. 2014]. Some interesting research directions
include: (1) further integrating these types of platforms into disaster management
systems; (2) providing a unified storage pipeline for heterogeneous, multisource dis-
aster data; (3) building a computing pipeline capable of real-time services; and (4)
enabling efficient information digestion and quick response for users in disaster
situations.
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Lars Döhling and Ulf Leser. 2011. Equatornlp: Pattern-based information extraction for disaster response.

In Terra Cognita 2011 Workshop, Foundations, Technologies and Applications of the Geospatial Web,
Vol. 38. Springer, Bonn, Germany, 127–138.

X. Dong and D. C. Pi. 2013. Novel method for hurricane trajectory prediction based on data mining. Natural
Hazards and Earth System Science 13, 12, 3211–3220.
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